首页> 资源> 论文>正文

地下水除铁除锰研究的问题与发展

论文类型 技术与工程 发表日期 2003-10-01
来源 《工业用水与废水》2003年第3期
作者 陈宇辉,余健,谢水波
关键词 地下水 水处理 生物除铁 生物除锰 铁细菌
摘要 介绍了地下水除铁除锰的方法及发展,重点讨论了近年来提出的生物除铁除锰观点及其与传统除铁除锰理论的不同之处,并根据笔者在洞庭湖区的试验成果分析了生物除铁除锰理论的疑点,认为微生物除铁作用很小,生物除锰的作用是存在的,但其机理还有待深入研究。

陈宇辉1 余健1谢水波2

(1.湖南大学土木工程学院,湖南 长沙  410082;  2.南华大学 建筑工程与资源环境学院,湖南 衡阳  421001)

  摘要:介绍了地下水除铁除锰的方法及发展,重点讨论了近年来提出的生物除铁除锰观点及其与传统除铁除锰理论的不同之处,并根据笔者在洞庭湖区的试验成果分析了生物除铁除锰理论的疑点,认为微生物除铁作用很小,生物除锰的作用是存在的,但其机理还有待深入研究。
  关键词:地下水;水处理;生物除铁;生物除锰;铁细菌
  中图分类号:TU991.26  文献标识码:A  文章编号:1009-2455(2003)03-0001-04

Questions In Study on Removing Iron and Manganese from Groundwater and Development of Methods

  Abstract:Methods for removing iron and manganese from groundwater and development thereof are presented,with stress put on discussing the biological removal of iron and manganese Introduced in recent years as well as the differences between it and the conventional ways.And,based on the results of the tests made by the author in Dongting Lake area and having analyzed several doubts on the theory of biological removal of iron and manganese,the author is of the opinion that the effect of iron removal by microorganism is insignificant and the effect of biological removal of manganese does exist yet the mechanism of it needs further study.
  Key words:groundwater;water treatment;biological removal of iron;biological removal of manganese;iron bacteria

  地下水除铁除锰的研究在国内已有较长的历史。上世纪60年代初,我国实验成功了天然锰砂接触氧化除铁工艺,7年代确立了接触氧化除铁理论,80年代初,又开发了接触氧化除锰工艺,并迅速在生产上应用推广。90年代以来,国内外的学者对传统的除铁除锰机理提出了不同的看法,认为地下水中铁细菌的生物作用是铁锰去除的主要原因。生物除铁除锰理论的提出,给除铁除锰工艺带来了很多新理论,加深对这些理论的认识,对科学研究和生产实践都有重要的指导意义。

1 除铁理论与工艺

  铁的常见化合价有十2价和十3价,地下水的氧化还原电位比较低,PH值在6.0~7.5之间,这种情况下铁一般是以Fe2+的形式存在地下水中。铁的氧化还原电位比氧低,易于被空气中的氧所氧化,pH值对Fe2+的氧化速率有较大影响,在 pH>5.5的情况下,地下水的pH值每升高1.0,二价铁的氧化速度就增大100倍1
1.1 空气自然氧化除铁
  
建国初期,国内地下水除铁大多采用的自然氧化除铁工艺。其基本原理是曝气充氧后将亚铁氧化为三价铁,经反应沉淀之后,过滤将其去除。前已述及,提高地下水的pH值能够大大加快Fe2+氧化为Fe3+的速度。因此,空气自然氧化工艺通常采用较大曝气强度,在充氧的同时散除地下水中的游离CO2以提高pH值,曝气后的pH值一般在7.0以上。尽管如此,空气自然氧化除铁工艺所需的停留时间仍较长,约2-3h,且由于三价铁絮凝体较小。容易穿透滤层,影响水质。另一方面,水中溶解性硅酸与三价铁氢氧化物形成硅铁络合物:

   Fe3++Si0(OH)3-1=FeOSi(OH)32+

  使Fe(OH)3胶体凝聚困难,影响氢氧化铁的絮凝,难以从水中分离。在地下水碱度较低时,溶解性硅酸对除铁效果影响尤为显著。
1.2 接触催化氧化除铁
  
接触氧化除铁,地下水经过简单曝气要絮凝、沉淀而直接进入滤池,在滤料表面催化剂的作用下,亚铁迅速地氧化为三价铁,并被滤层截留而去除。由于催化剂的作用,只要处理水的pH值高于6.0,Fe2+就能顺利的氧化为Fe3+。我国绝大多数地下水pH值都是高于6.0的,Fe2+的氧化均能迅速完成,这样就可以简化曝气过程。曝气只需要向水中充氧即可。接触氧化除铁工艺的构筑物较为简单,水力停留时间只需5~30min即可。同时,铁的去除不受溶解性硅酸价的影响。出水总铁浓度也随着过滤时间的增加而减少。在周期时间内,水质会越来越好2
  接触氧化除铁的机理是催化氧化反应,起催化作用的是滤料表面的铁质活性滤膜。铁质活性滤膜首先吸附水中的亚铁离子,被吸附的亚铁离子在活性滤膜的催化作用下迅速氧化为三价铁,并且使催化剂再生,反应生成物为催化剂,又参与新的催化反应,铁质活性滤膜接触氧化铁的过程是一个自催化反应过程。其反应式如下:

  关于铁质活性滤膜的化学组成有几种不同的看法。李圭白1认为,铁质活性滤膜的化学组成为Fe(OH)3·2H2O。新鲜的滤膜具有很强的催化活性,随着时间的增长,滤膜老化脱水活性也逐渐降低,滤膜最终老化生成FeOOH便丧失催化活性。而高井雄3则认为,在除铁滤池中自然形成的羟基化铁(FeOOH)的羟基表面起接触催化作用。羟基氧化铁不是以FeOOH所示的简单分子形式存在的,它是铁原子、氧原子和固体内氢原子三者相结合的巨大无机分子。
1.3 生物氧化除铁
  
在除铁的研究实践中,有人在除铁滤池中检测到了铁细菌的存在,并发现生物在铁的去除过程中起很大作用,提出了生物除铁的观点。Pierre Mouchet[4在低含铁量(0.75~1.1 mg/L)和低含铁量(0~0.7mg/L)的情况下发现生物在除铁过程中有很大的作用,认为生物是铁去除的主要原因。Catherine V.Tremblay[5也在低溶解氧含量下发现生物除铁作用的存在。
  但是笔者在洞庭湖区的试验发现,生物在除铁中的作用很小。试验采用两个内径188m m的有机玻璃滤柱,滤砂均为刚投入运行的新石英砂。其中一个滤柱每天用1%的HgCI2溶液浸泡滤层1~2h,另一个为对比柱。滤速为 6 m/h,进水溶解氧大于6mg/L,进水pH6.5,进水总铁的质量浓度大于15 mg/L。试验结果如图1。试验发现两者处理效果基本相同,运行不到十天两个滤柱出水含铁量已经完全达标,说明高含铁量地下水中,生物作用对于铁的去除几乎没有影响。

2 除锰理论与工艺

  锰常见的化合价有十2,+4,+6,+7四种价位,其中十6价和十7价锰在天然水中一般不稳定,实际中可以认为不存在。+2价锰溶于水是要去除的主要对象,十4价锰则常以固体物质MnO2及水合物的悬浮粒子形式存在于水中,其溶解度甚低,不足为害。锰比铁去除难得多,Fe2+在 pH>7.0的情况下就能够迅速氧化为Fe3+,而水中二价锰则需在PH>9.5时,才能比较迅速地氧化为MnO2析出。地下水的PH值一般在7.5以下,必须加以适宜条件,反应才能进行。
2.1 接触氧化除锰
  
接触氧化除锰工艺流程比较简单,原水经简单曝气之后进入除锰滤池,在滤料表面的锰质活性滤膜的作用下,Mn2被水中的溶解氧氧化为MnO2,并吸附在滤料表面,使滤膜得到更新,该过程也是自催化反应。
  关于锰质活性滤膜的组成有几种不同的观点,李圭白认为接触催化物为MnO2,其反应式为:

   2Mn2+ +(X-1)O2 + 4OH- = 2MnOX·zH2O+2(l—z)H2O

  范懋功6经过红外光谱测定认为接触氧化物应该是Mn3O4。还有一种观点则认为活性滤膜是一种待定复合物,可用MnxFeOz·xH2O表达,其结构为六方晶系。
  接触氧化除锰与接触氧化除铁的工艺非常类似,都是简单曝气后直接过滤,水力停留时间短。但由于铁锰性质略有不同,因而影响因素也有所不同。前已述及,铁的氧化还原电位比锰低,二价锰较难被氧化成四价锰,所以其滤速比除铁滤速低,一般为8~10 m/h。而且二价铁对四价锰成为还原剂,大大阻碍二价锰的氧化:

   2Fe2+ + MnO2 + 2H2O = 2Fe3+ + Mn2+ + 4OH-

  锰的去除远较铁为困难,铁锰共存时,铁对锰的去除有干扰。在滤层中,要先完成对铁的去除,才能开始除锰,李圭白认为要获得稳定的除锰效果,Fe2+的界限质量浓度约为2 mg/L。
2.2 生物氧化除锰
  
生物除锰是国内外近年来提出的除锰理论,该观点认为除锰滤池中锰的去除主要是滤层中铁细菌生物作用的结果,而不是传统除锰理论所讲的,锰是锰质活性滤膜的化学催化作用去除的。而生物除锰理论还认为,黑砂表层的锰质活性滤膜并不仅仅是由锰的化合物所组成,而是锰的化合物和铁细菌的共生体,且活性滤膜是在微生物的诱导作用下形成的。除锰滤池中,微生物氧化原水中的锰获得能量,不断繁殖并附着在滤料表面,同时被氧化的MnO2也沉积在滤料表面,与微生物形成一层“黑膜”,就是接触氧化除锰工艺中的锰质活性滤膜。滤层成熟后,滤膜不断吸附水中的Mn2,其中铁细菌利用水中的溶解氧将Mn2氧化为MnO2·mH2O并沉积在滤膜的表面,成为滤膜的一部分,使滤膜得到更新。吉林大学鲍志戎7-8将成熟的石英砂灭菌以后发现滤层的除锰能力急剧下降,且滤砂表层的黑膜亦逐渐脱落,从而证实生物作用是锰去除的主要原因,而锰质活性滤膜则是微生物作用的结果,在灭菌以后,由于微生物死亡,滤膜不能及时更新,便逐渐老化脱落,最终丧失除锰能力。张杰9的试验研究也认为,除锰是生物作用的结果,除锰滤池的成熟是滤层中微生物群落繁殖代谢,达到平衡的过程。
  生物除锰的工艺流程与接触氧化除锰工艺相同,曝气后直接过滤,流程简单,构筑物少,停留时间短。影响生物除锰滤池的因素比较多,在培养初期,滤池反冲洗的强度不宜太大,一般以10~14L/(s·m2)为宜。生物除锰对pH值的要求较宽,6.0以上就能有良好的除锰效果。

3 现存的问题及发展

  生物除铁除锰理论已经有较多的研究,但是在生产实践中仍有不少问题存在、国外多位学者均发现了生物除铁作用的存在,但是诸多试验表明在高铁情况下生物除铁作用微乎其微。生物除铁究竟存在与否,以及在怎样的水质条件下存在,如原水含铁量、溶解氧含量、PH值等,均是需要进一步探索的问题。若生物除铁存在,则其是否比接触氧化除铁更有优势,如过滤周期是否更长,滤层含污能力是否更高等,都是对生产非常有意义的问题,值得继续研究。
  生产实践中,个物除锰尚存在一些无法解释的现象。一般来说,成熟的一级除铁除锰滤池中,滤层上部是除铁带,下部为除锰带。但试验发现,只有在滤层表面铁细菌计数达到105数量级时,滤池的除锰能力才成熟,可是滤层除锰带却常常只能到102-103数量级的铁细菌。如果铁细菌是除锰的主要原因,那为什么除锰作用往往发生在微生物数量较少的下层,而不是微生物数量较多的上层?7-8
  
张杰10-11发现Fe2是铁细菌除锰的诱导因素,在没有Fe2存在的情况下,铁细菌无法利用水中的Mn2。并且对于成熟的生物除锰滤层而言,如果连续较长时间不通入含铁水,则滤层会逐渐丧失除锰能力,并发生漏锰现象,只有再通入含铁水一段时间后滤层的除锰能力才能逐渐恢复。但是地下水进入滤层后,Fe2往往在滤池上部10cm的滤层中就几乎被全部氧化为Fe3,下层的Fe2含量微乎其微,即使进水的Fe2的质量浓度大于15 mg/L 亦是如此。为什么大部分Mn2的去除是在几乎不含Fe2的滤层下部完成,这也是生物除锰尚无法解释的现象。而笔者的试验却发现,在两级除铁除锰过滤中,二级除锰滤柱在一级滤柱出水Fe2含量没有或者很小的情况下(<0.03mg/L=,除锰非常稳定,而当二级进水Fe2增加时发现除锰滤柱出现异常,如图2。分层取样为过滤开始lh后取样,进水亚铁质量浓度分别为 lmg/L和5 mg/L,PH为6.5,溶解氧大于5 mg/L。试验发现,滤层中部的含锰量均超过进水的含锰量,特别在进水含铁量较高时(5 mg/L)更甚,到滤层下部才逐渐降低。笔者推测,出现这种情况的原因可能是高浓度的铁阻碍了细菌对锰的摄取,破坏了除锰滤膜的平衡,使滤膜脱落,滤层中部的含锰量从而升高。脱落的滤膜被下层滤砂吸附,锰含量又逐渐降到正常的水平。这也许就是除锰一般发生在含铁量微乎其微的二级滤柱或一级过滤中滤柱下部的原因。

  迄今为止,生物除锰仍然没有较为成熟的工艺参数,如生物除锰的经济滤速、极限滤速、过滤周期、最低溶解氧含量、经济曝气强度等。这些数据的缺乏,使得生物除锰还没有大量应用。

参考文献:

[1]李圭白,刘超 地下水除铁除锰(第二版)[M].北京:中国建筑出版社,1989.
[2]刘烂生,黄毅轩,陈牧民 关于地下水除铁、除锰机理的讨论 [J].给水排水,1996,(10):17-20
[3]张杰,戴镇生.地下水除铁除锰现代观 [J]给水排水,1996,22(10):13—16
[4]Pierre Mouchet.From conventional to Biogical Removal of Iron and Maganese in France[J]Journal AWWA,l992,84(4):158—167
[5]Cathenrine V Tremblay,Andre Beaubien,Philippe Charles,et al. Control of biological iron removal from drinking water using oxidation-reduction potential [J].Water Science and technology   1998,38(6):121-128
[6]范懋功.地下水接触氧化除铁除锰中催化剂的形态 [J] 中国给水排水,1985,(3):56-62
[7]鲍志戎,孙书菊,王国彦,等、自来水厂除锰滤砂的催化活性分析[J].环境科学,1997,18(1):38-41.
[8]朴真三,鲍志戎,李惟,等 自来水厂除锰滤池的成熟与微生物群落的研究 [J]环境科学,1998,19(1);50-53
[9]张杰,杨宏,徐爱军,等.Mn2+氧化细菌的微生物学研究[J]  给水排水,1997,23(l):19-23
[10]张杰,杨宏,李冬,等 生物滤层中Fe2+的作用及对除锰的影响[J].中国给水排水,2001,17(9):14-16
[11]张杰,杨宏,徐爱军,等 生物固锰除锰技术的确立[J]给水排水,1996,22(1):5-10.


作者简介:陈宇辉(1980),男,湖南衡阳人,湖南大学水工程与科学系研究生,电话(0731)8828051,yuhuixp@netase.com。

论文搜索

发表时间

月热点论文

论文投稿

很多时候您的文章总是无缘变成铅字。研究做到关键时,试验有了起色时,是不是想和同行探讨一下,工作中有了心得,您是不是很想与人分享,那么不要只是默默工作了,写下来吧!投稿时,请以附件形式发至 paper@h2o-china.com ,请注明论文投稿。一旦采用,我们会为您增加100枚金币。