首页 > 新闻 > 正文

污水处理厂升级改造中的认识误区

时间:2018-01-15 09:45

来源:中国给水排水

作者:郝晓地等

评论(

3 多级A/O比A2/O脱氮除磷效果好

多级A/O工艺以Bardenpho工艺为代表,随后又衍生出多点进水的多级A/O,如图3所示。


图3 典型多级A/O工艺流程

Bardenpho(图3a)出现于20世纪70年代,当时还没有发现反硝化除磷现象。这种工艺在设计原理上将脱氮与除磷分隔设置,通过前置反硝化方式将污水中大部分氨氮在第一个好氧池(O1)硝化回流至第一个缺氧池(A1)而脱氮。第二级A/O原理上是除磷,即通过第二个厌氧池(A2)释磷、第二个好氧池(O2)吸磷。然而,这种工艺将进水碳源(特别是VFAs)在第一级A/O中已大部分消耗(A1反硝化、O1碳氧化),留给第二级A/O的碳源已所剩无几(特别是磷细菌所必须的VFAs),因此,磷细菌在这种情况下难以生长、繁殖,除磷也就无从谈起。显然,Bardenpho工艺要想具备同步脱氮除磷功能需要进水中的碳源异常充足,在满足反硝化(A1)和直接碳氧化(O1)的需要后仍有碳源(VFAs)剩余,这样才能保证A2中磷细菌对乙酸的摄取,进而使O2产生吸磷作用。

多点进水多级A/O(图3b)在工艺设计上碳源分段进入三个厌氧(实为缺氧)池,但在“厌”氧池内发生的主要还是常规反硝化作用。首先,污泥回流中的NO3-首先在A1中反硝化而与磷细菌抢夺碳源,接下来O1池硝化产生的NO3-会进入A2,以此类推。结果,这个工艺其实与Bardenpho类似,主要以硝化和反硝化为主,磷细菌也很难得势生长。

基于之前模拟A2/O时的相同水质、水量以及反应池体积,分别对图3所示的Bardenpho和三段多点进水工艺进行模拟,结果如图4所示。显然,Bardenpho几乎没有除磷作用,多点进水工艺稍微存在一些除磷效果,但与A2/O效果简直不能同日而语。如果将与A2/O变型为UCT,除磷效果则会更好。


图4 A2/O,Bardenpho与多级A/O工艺出水模拟比较

4 MBR为低氮、磷出水之选

A2/O+膜过滤(MBR)目前似乎已成我国污水处理升级改造的“标配”。很多决策者将出水达标和缓解黒臭水体的宝全部“押”在了MBR上。事实上,MBR对生物净化功能(特别是脱氮除磷)的强化作用几乎没有,只是可以聚积较高的生物量而已。相反,曝气池高的生物量意味着低的排泥量,这对以排除剩余污泥而产生的生物除磷作用十分不利。况且,膜只能截留不溶解的SS,如果前端吸磷效果不佳,溶解性PO43-将无法对其进行截留。对A2/O和UCT模拟结果显示,UCT在除磷效果方面远好于A2/O,只要保持出水SS在5 mg/L以下,出水TP甚至可以达到北京地方标准中的A标准(0.3 mg P/L)。而从传统二沉池出水SS=10 mg/L降低至SS在5 mg/L以下只需传统砂滤即可奏效。

有关MBR在能耗、占地、费用、清洗等方面的综合评价表明,MBR并不是一种称得上具有可持续性的工艺。有鉴于此,荷兰仅有的几座MBR工艺在经历了几年高能耗以及清洗(膜污染)导致的高昂运行费后已被拆除,继而回归传统活性污泥+砂滤方式工艺。这对比中国更加缺地的荷兰来说实属一种明智的选择。

5 MBBR适合升级改造

轻质悬浮型填料出现使得生物膜技术获得了空前的发展,人们寄希望于向曝气池中定向投加悬浮填料,以期在悬浮增长的生物量(活性污泥)基础上再获得1倍以上的增值生物量(生物膜),这也就促进了MBBR(Moving Bed Biofilm Reactor)工艺的出现和应用。理论上讲,单位体积内的生物量增加,要么可以减少反应器的体积,要么可以增加反应器对污染负荷的处理能力。所以,MBBR应用而生。

对污水处理各种细菌所需要的生长环境来说,填料投入A2/O好氧、缺氧池倍增生物量后可强化碳氧化、硝化、反硝化作用。但将填料投入厌氧池,只可能有助于颗粒有机物的水解、酸化作用,并不会促进磷细菌的倍增,因为磷细菌是一种“动态”细菌,需要顺序存在厌氧--缺氧/好氧的环境下才能生长。投入厌氧池的填料显然难以实现这种环境上的需要(仅固守于厌氧池),所以,磷细菌不会像常规异养菌(OHO)、硝化菌那样增量繁殖。只有采用向SBR反应器中投加填料的方式才有可能同时获得PAOs/DPB、OHO和AOB/NOB倍增的机会。因此,填料在A2/O等连续流工艺生物除磷方面强化作用仅局限于水解、酸化,不会对磷去除产生明显改进。

笔者进行的SBR加填料(德国Mutag BioChip™;园片型,直径=22 mm,厚度=1 mm,比表面积>3 000 m2/m3)试验表明,加填料SBR反应器近1年后生物膜生物量确实持续增长,最终使该反应器内的总生物量(生物膜+活性污泥)增加到未加填料SBR反应器(仅有活性污泥,MLVSS=1 400~1 800 mg/L)的2.9倍。但两个反应器对COD、N和P的去除率几乎处于相同的处理水平,均能使模拟生活污水(COD=200~400 mg/L,TN=40~80 mgN/L,TP=8~16 mgP/L)达到国家一级A标准,并没有观察到两个反应器在净化效果上的明显差别。即使在非稳态工况下运行,两个反应器对COD、N和P的去除率也没有出现明显预期差别。

总之,MBBR添加表观比表面积填料会有助于生物膜生长、老化脱落、避免有机物沉积,产生的生物增加量也有助于生物净化作用。然而,对市政污水而言,传统活性污泥法只要保持3 000~4 000 mg/L的MLSS,对COD、N、P去除完全可以奏效,用不着额外再去加填料而增加太多的生物量,除非进水中各种污染物浓度超高。然而,所添加的填料无助于生物除磷(像A2/O这样的连续流工艺),反而会导致悬浮污泥的破碎、细化,造成二沉困难,最后只得求助于后端膜分离(MBR)来解决出水SS分离问题。这会使工艺流程延长而耗能,导致运行管理上出现麻烦。

6 结语

在污水处理升级改造或新厂建设方面,业主、设计者往往追求所谓新技术、新工艺,以至于形成了传统工艺难以满足严格排放标准的“共识”。对市政污水处理来说,脱氮除磷是关键,至于COD需达超低排放标准(30 mg/L)只是排放标准不科学制定的问题(荷兰出水COD允许120 mg/L,但BOD5却要求在1 mg/L;惰性COD进入水体不会耗氧,也不会对健康构成什么危害)。在脱氮除磷方面,普遍低碳源是我国污水的特征,但这不等于说传统工艺就不能应对低碳源下的脱氮除磷问题。回归传统工艺,比如说,A2/O特别是UCT,反硝化除磷及侧流磷回收等都可以轻易实现,完全可弃用前端投加碳源(脱氮),后端投加化学药剂(除磷)的常规脱氮除磷方式,也不需要无限延长流程(多级AO、后端深V滤池等),更不需要MBR或MBBR这些无助于生物除磷的所谓新工艺助力。

12

编辑:赵凡

  • 微信
  • QQ
  • 腾讯微博
  • 新浪微博

相关新闻

网友评论 人参与 | 条评论

版权声明: 凡注明来源为“中国水网/中国固废网/中国大气网“的所有内容,包括但不限于文字、图表、音频视频等,版权均属E20环境平台所有,如有转载,请注明来源和作者。E20环境平台保留责任追究的权利。
媒体合作请联系:李女士 010-88480317

010-88480329

news@e20.com.cn

Copyright © 2000-2020 https://www.h2o-china.com All rights reserved.

中国水网 版权所有