电解/UASB/SBR工艺处理农药废水

王永广1,杨剑锋2, 春梅3

(1.扬州大学 环境科学与工程学院, 江苏 扬州 225009, 2 吉林油田设计研究院, 吉林 松原 131200, 3.扬州市城市规划设计研究院, 江苏 扬州 225001)

摘 要: 采用电解 /UASB /SBR 工艺可有效地处理氟磺胺草醚 农药废水, 处理后出水水质符合 《污水综合排放标准》(GB 8978—1996)的二级标准。

关键词: 农药废水; 电解; UASB工艺; SBR工艺

中图分类号: X703 1 文献标识码: C 文章编号: 1000-4602(2005)03-0083-03

E lectrolysis / UASB / SBR Process for Pesticide W astewater Treatment

WANG Yong-guang¹, YANG Jian-feng², DNG Chun-m ei³

(1 School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009

China; 2 Jilin O il Field Design and Research Institute, Songyuan 131200, China; 3 Urban

Planning Design and Research Institute of Yangzhou, Yangzhou 225001, China)

Abstract Electrolysis / UASB / SBR process was used to effectively treat for esafen pesticide wastewater. The treated effluent quality attained the secondary criteria specified in the *Integrated Wastewater Discharge Standard* (GB 8978—1996).

Key words pesticide wastewater electrolysis, UASB process SBR process

某农药厂在生产氟磺胺草醚过程中产生的混合 废水量为 100 m³/d,水质见表 1。

表 1 农药废水水质

Tab. 1 Pesticide w astew ater quality

项目	pН	OD / (mg•	BOD ₅ / (mg•	C1 / (mg•	SS/ (mg•	
П		L^{-1})	L^{-1})	L^{-1})	L^{-1})	
数值	3. 0~ 4. 0	4 000~ 5 000	50~ 70	1 600~ 2 800	20~ 30	

由表 1可知, 氟磺胺草醚农药废水的可生化性 差、氯离子浓度高, 不宜直接进行生化处理, 故采用 电解 /UASB /SBR 工艺处理。

1 工艺设计

1.1 工艺流程

该工程的设计水量为 $120 \text{ m}^3 / \text{d}$ 连续 24 h运 行,处理流程见图 1 s

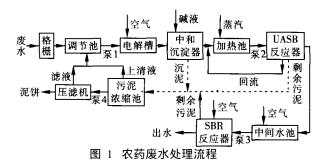


Fig 1 Flow chart of pesticide wastewater treatment process

1.2 处理单元

① 格栅

设粗、细格栅各 1道,不锈钢材质,安装倾角为 70°。设计流量取最大时流量 $(8 \, \text{m}^3 / \text{h})$,水深取 0 15 m。 粗格栅的宽 ×高为 150 mm × 600 mm, 栅条宽为

20 mm, 相邻栅条间距为 50 mm, 过栅流速为 0~20 m /s 细格栅的宽 ×高为 $150 \text{ mm} \times 600 \text{ mm}$, 栅条宽为 20 mm, 相邻栅条间距为 15 mm, 过栅流速为 0~10 m /s

② 调节池

为钢筋混凝土结构, 内壁做玻璃布防腐。按平均时流量为 5 m³/h、停留时间为 8 h进行设计。平面尺寸为 5 0 m × 4. 0 m, 有效水深为 2 0 m, 总深度为 3. 5 m, 高出地面 0 3 m。泵 1为废水提升泵 (氟塑液下泵, 2台, 1用 1备), 设计流量为 5 m³/h, 扬程为 120 kPa 电机功率为 1.1 kW。

③ 电解槽

考虑到电流密度为 30 0 A /m² 时所对应的电耗已达到 3 0 (kW• h) /m³, 电解 1 h后水温升高 6~7 \mathbb{C} , B /C 值已提高至 0 20, 故设计电流密度取 30 0 A /m²。

电解槽采用 14 mm 厚的 PVC 板制作, 外壁沿横向、竖向每隔 400 mm 加 PVC 肋。设计流量为 5 m³/h, 反应时间为 1 h, 有效容积为 5 m³。平面尺寸为 3.2 m×1.6 m, 有效水深为 1.1 m, 总深度为 1.6 m。 阴、阳极板均为宽×高 = 1.5 m×1.1 m、厚为 5 mm 的钢板, 共 160 块, 相邻极板间距为 20 mm, 极板水下高度为 1.0 m; 同极极板为并联接线, 电流密度为 20.0~40 0 A/m², 稳压电源输出电流为 2 400~4 800 A, 输出电压为 5~10 V, 输出功率为 12~48 lW。电解槽底部设 DN25的穿孔 PV C管, 布气量为 2.5 m³/h, 气水比为 0.5:1。

④ 中和沉淀器

采用 6 mm 厚的 A_3 钢板制作, 内壁做玻璃布防腐。设计流量为 5 m³/h, 分为中和区、沉淀区 [中和区反应时间为 2 m in, 沉淀区水力停留时间为 150 m in, 表面负荷为 1 m³/(m²•h)]。中和区平面尺寸为 500 mm×500 mm, 有效水深为 0 7 m, 总深度为 1 0 m, 内设一搅拌桨, 搅拌转速为 100 r/m in, 电机功率为 0 5 kW。沉淀区平面尺寸为 3 0 m×2 0 m, 有效水深为 2 1 m, 底部泥斗深为 1 2 m, 总深度为 3.8 m。沉淀区内安装 60 mm 的 PVC 斜管 (长为 1.0 m, 安装倾角为 60°)。

⑤ 加热池

为地下式钢筋混凝土结构,池壁、底板及盖板内设置 100 mm 厚空气夹层。

设计总进水量为 15 m3 /h(包括中和沉淀器出

水 $5 \, \text{m}^3$ /h 和 UASB 回流水 $10 \, \text{m}^3$ /h), 加热时间为 $30 \, \text{m}$ in, 有效容积为 $7.5 \, \text{m}^3$ 。平面尺寸为 $2.5 \, \text{m} \times 2.0 \, \text{m}$, 有效水深为 $1.5 \, \text{m}$, 总深度为 $2.0 \, \text{m}$ 。 池底设 DN $50 \, \text{穿}$ 孔无缝钢管布蒸汽, 蒸汽 (表压为 $0.30 \, \text{MPa}$)最大供应量为 $450 \sim 500 \, \text{kg/h}$

⑥ UASB 反应器

为半地下式钢筋混凝土结构, 池壁、底板及盖板内设置 100 mm 厚空气夹层。设计流量为 5 m³/h设计进水 COD为 2 800~ 3 500 mg/L, 容积负荷为 5 0 kgCOD/(m³• d), 有效容积为 68~ 84 m³, 反应温度为 30~ 35 °C, 设计回流比为 200%, 上升流速为 0 8~ 1 0 m/h

平面尺寸为 $40m \times 4.0m$, 污泥区高为 55m, 三相分离区高为 31m 总深度为 90m。

由于沼气产量较小, 故未设沼气回收系统, 而在反应器顶部设置了 DN 50 的排空管。

泵 2为 2台进水泵 (潜污泵, 1用 1备), 设计流量为 $15 \,\mathrm{m}^3$ /h, 扬程为 300 kPa 电机功率为 3 0 kW。

⑦ 中间水池

为钢筋混凝土结构, 按平均时流量为 5 m^3 /h. 贮水时间为 8 h设计。平面尺寸为 5 0 $\mathrm{m} \times 4$ 0 m , 有效水深为 2 0 m , 总深度为 2 3 m 。池内设穿孔曝气管曝气 (以吹脱 $\mathrm{CO}_{25}\mathrm{H}_2\mathrm{S}$ 等还原性物质), 供气量为 0 25 m^3 /m in 气水比为 3: 1。

⑧ SBR 反应器

为钢筋混凝土结构,设计工作周期为 8 h(进水 1.0 h 曝气 6.0 h,沉淀 1.5 h,排水 0.5 h)。

设计流量为 5 m^3 /h, 设计进水 COD 为 $560 \sim 700 \text{ mg/L}$, 容积负荷为 $0.3 \text{ kgCOD}/(\text{m}^3 \cdot \text{d})$, 有效容积为 $75 \sim 94 \text{ m}^3$, 充水比为 $0.40 \sim 100$

SBR 反应器为圆形 (直径为 5 2 m), 有效水深为 4 5 m, 总深度为 5 0 m。反应器内设 11个 800 mm 的散流式曝气头 (安装高度为 0 5 m), 曝气头作用面积为 2 m^2 /个; 设 2 台三叶罗茨鼓风机 (1用 1 备), 电机功率为 4 0 kW; 滗水器排水量为 80 m^3 /h. 泵 3为 2台进水泵 (潜污泵, 1用 1备), 设计流量为 40 m^3 /h, 扬程为 80 kPa 电机功率为 3 0 kW。

⑨ 污泥处置

中和沉淀器沉泥及 UASB、SBR 反应器的剩余污泥(量很少)均排至污泥浓缩池,浓缩池有效容积为 20 m³。泵 4为压滤机进泥泵,设计流量为 3 m³/h

扬程为 600 kPa 选用的厢式压滤机的过滤面积为 10 m^2 。

2 运行结果

电解、UASB、SBR的调试同步进行,15个月后

整套设施运行正常,满足设计要求,出水符合《污水综合排放标准》(GB 8978—1996)的二级标准,于2002年5月10日通过当地环保部门组织的验收。验收后的实际运行效果见表2。

表 2 实际运行效果

Tab. 2 Treatment result

取样时间		2002年 5月 11日	2002年 6月 11日	2002年 7月 11日	2002年 10月 11日	2002年 11月 11日	2002年 12月 11日	2003年 3月 11日	2003年 4月 11日	2003年 5月 11日	2003年 6月 11日
COD/	进水	4 485	4 3 3 2	5 301	3 719	4 22 1	4 359	4 769	5 273	4 980	4 250
$(m g^{\bullet} L^{-1})$	出水	148	132	123	144	158	144	131	122	137	145
BOD ₅ /	进水	62	53	58	66	70	57	68	68	57	72
$(m g^{\bullet} L^{-1})$	出水	71	67	72	84	69	67	66	71	67	68
SS/	进水	27	20	21	25	22	26	24	22	25	22
$(m g^{\bullet} L^{-1})$	出水	43	48	59	67	58	52	69	53	65	65
pН	进水	3. 6	3 9	3. 3	4 0	3. 8	3. 1	3 3	3. 4	3. 4	3. 9
	出水	8 6	8 2	7. 8	7. 6	8.0	8 1	8 0	7. 5	8.1	8.0
注: "进水"指调节池出水,"出水"指 SBR 出水。											

该工程的电费为 2 30元 fm^3 , 药剂费为 0 30元 fm^3 , 人工费为 1 50元 fm^3 , 则运行成本为 4 10元 fm^3 。

3 结论

① 电解 /UASB /SBR 工艺可有效地处理可生化性差、氯离子浓度高的氟磺胺草醚农药废水, COD 去除率 > 97%, 处理后出水水质符合《污水综合排放标准》(GB 8978—1996)的二级标准, 运行成本为4 10元 /m³。

② 建议设计参数

a 电解槽的反应时间为 1 h, 电流密度为 30 A/m²;

h UASB 反应器的反应温度为 30~ 35 ℃, 容积 负荷为 5 0 kgCOD /(m^3 • d), 回流比为 200%, 上升流速为 0. 8~ 1. 0 m /h,

c SBR 反应器的工作周期为 8 h(进水 1.0 h、

曝气 6 0 h.沉淀 1 5 h.排水 0 5 h), 容积负荷为 0 3 kgCOD /(m³• d), 充水比为 0 40

③ 整套设施调试 1年多方正常运行。

参考文献:

- [1] 金兆丰,邓慧萍. 21世纪的水处理 [M]. 北京: 化学工业出版社, 2003.
- [2] 马志毅, 郜宏漪. 电气浮对水中油类及表面活性剂去除的试验研究[J]. 水处理技术, 1998, 24(5): 303-307
- [3] 初里冰,杨凤林. 低温厌氧处理低浓度废水研究进展 [J]. 环境污染治理技术与设备, 2003, 4(4): 61-65.

电话: (0514) 7602145 传真: (0514) 7203285

E – maił yzwangy@ 163. com

收稿日期: 2004- 11-08

・ 工程信息・

福州市连坂污水处理厂工程

该工程 —期处理规模: 15×10^4 m³ /d,总投资额: 5 48亿元,建设周期: 2004 年— 2007 年,甲方:福州市建设委员会。目前该工程正在编制可研报告。

(本刊编辑部)