有机氯农药污染场地挖掘过程中污染物的分布及健康 风险

张石磊 , 薛南冬*, 杨兵 , 李发生 , 陈宣宇 , 刘博 , 孟磊

(中国环境科学研究院环境基准与风险评价国家重点实验室,北京 100012)

摘要:分析了某污染场地挖掘过程中场地内及其周边空气中 HCHs 和 DDTs 的污染物分布特征;应用健康风险评价模型研究 了挖掘场地附近居民区经呼吸暴露途径的致癌和非致癌风险.结果表明,挖掘区附近居民区空气中 HCHs 和 DDTs 呈现出明 显的季节分布特征 秋冬季节浓度高 春夏季节浓度较低. \sum HCHs 冬季浓度在 5.65~133 ng·m⁻³之间,均值为 28.6 ng·m⁻³; \sum DDTs 冬季浓度在 4.48~2 800 ng·m⁻³之间,均值为 457.3 ng·m⁻³. \sum HCHs 春季浓度在 6.23~26.4 ng·m⁻³之间,均值为 15.1 ng·m⁻³; \sum DDTs 夏季浓度在 3.17~8.1 ng·m⁻³之间,均值为 6.1 ng·m⁻³,春夏季节施工可减少二次污染产生.居民区 空气中 HCHs 和 DDTs 浓度与离地面高度呈显著负相关(P < 0.05, n = 33).挖掘区附近成人居民经呼吸暴露产生的致癌风险 及非致癌风险在可接受风险范围内,但挖掘过程对幼年居民产生一定的致癌及非致癌风险.因此,该类污染场地挖掘过程中 应采取措施抑制挖掘区污染物向空气扩散,以降低风险.

关键词:HCHs; DDTs; 挖掘; 分布; 健康风险评价

中图分类号: X131; X820.4 文献标识码: A 文章编号: 0250-3301(2015) 02-0686-08 DOI: 10.13227 / j. hjkx. 2015. 02. 041

Distribution and Health Risk of HCHs and DDTs in a Contaminated Site with Excavation

ZHANG Shi-lei , XUE Nan-dong* , YANG Bing , LI Fa-sheng , CHEN Xuan-yu , LIU Bo , MENG Lei

(State Key laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

Abstract: Air samples were collected to analyze the distribution of HCHs and DDTs around a contaminated site during its excavation. The carcinogenic risks and non-carcinogenic risks through breath exposure were studied by health risk assessment modes. The results showed that , there was an obvious seasonal variation of HCHs and DDTs in air around the excavating area. The concentrations of HCHs and DDTs were higher in winter and autumn , lower in spring and summer. The \sum HCHs concentration ranged from 5.65 ng·m⁻³ to 133 ng·m⁻³ and the average value was 28.6 ng·m⁻³; \sum DDTs concentration ranged from 4.48 ng·m⁻³ to 2 800 ng·m⁻³ and the average value was 457.3 ng·m⁻³ in winter. However , the \sum HCHs concentration was between 6.23 ng·m⁻³ and 26.4 ng·m⁻³ , and the average value was 15.1 ng·m⁻³ in spring; the \sum DDTs concentration was between 3.17 ng·m⁻³ and 8.1 ng·m⁻³ and the average value was 6.1 ng·m⁻³ in spring; the \sum DDTs concentration was between 3.17 ng·m⁻³ and 8.1 ng·m⁻³ and the average value was 6.1 ng·m⁻³ in spring; the pollution could be reduced by excavating in spring and summer. The concentrations of HCHs and DDTs in the residents area were negatively correlated to the height(P < 0.05, n = 33). The carcinogenic and non-carcinogenic risks of adult residents through respiration to residents near the excavating area were lower than the acceptable level , while the excavating process caused carcinogenic and non-carcinogenic risks to young residents to some extent. In order to decrease the risks , measures should be taken to restrain the pollutants in the excavation area diffusing into the air.

Key words: HCHs; DDTs; excavation; distribution; health risk assessment

六六六(HCHs) 和滴滴涕(DDTs) 是曾被广泛使 用的有机氯杀虫剂^[12],由于它们具有较强的神经 和生殖毒性^[3],并能引发癌症^[45],严重威胁人类健 康,中国于 1980s 先后禁止生产和使用. 但过去曾 生产 HCHs 和 DDTs 而遗留下来的污染场地则成为 目前中国重要的环境问题^[1]. 尽管关于 HCHs 和 DDTs 环境影响的研究一直是中国环境科学领域的 热点,但主要集中在土壤、沉积物、河流及湖泊中 的分布、风险及来源分析等方面^[6~9],而针对污染 场地空气中 HCHs 和 DDTs 污染及其风险的研究鲜 有报道. 土壤挖掘是污染场地在异位修复过程中的 重要环节,而由于这类污染物的半挥发性,在挖掘扰

- 收稿日期: 2014-07-08; 修订日期: 2014-09-04
- 基金项目:环境保护公益性行业科研专项(201109017);国家高技术 研究发展计划(863)项目(2012AA06A304)
- 作者简介:张石磊(1985~),女 硕士研究生 助理研究员 ,主要研究 方向为土壤环境工程 ,E-mail: zhangshilei309@163.com
 - * 通讯联系人 E-mail: ndxue2013@ gmail. com

动过程中不可避免的会提升挖掘场地及周边空气中 污染物的含量,导致二次污染,威胁人类健康^[10]. 因此本文针对土壤挖掘扰动过程中空气中 HCHs 和 DDTs 的分布特征及健康风险进行了研究.

1 材料与方法

1.1 样品采集

使用空气被动采样器收集某污染场地挖掘过程 中居民区及挖掘场地的空气样品,空气被动采样器 由2个相向的不锈钢圆盖、1根主轴螺杆和聚氨酯 泡沫(PUF)组成,顶端由支架固定,采样时将PUF 固定在主轴上,PUF能同时吸附空气中气态和颗粒 态污染物.采样时间为2012年1月~2013年7月, 分别在居民楼的2、3、4、5、6、7、8、10、12、14、 15、17、20楼层(每层楼高度为2.4 m)设置采样 点;居民楼离污染场地挖掘区100~120 m.同时在 污染场地挖掘区内不同高度(15、30、60、90、130、 185 cm)设置采样点.在远离场地(5 km 以上)设对 照点.每个采样点放置两个空气被动采样器,收集 平行样品.采样点分布如图1所示.

图1 采样点分布示意

Fig. 1 Location of sampling sites in the studied area

1.2 样品分析

应用 GC-MS 仪(HP7890GC/5975MSD) ,弹性石 英毛细管柱 DB-5MS(30 m×0.25 mm I. D×0.25 m) 测定样品中 DDTs 和 HCHs. 仪器条件:进样口无 分流模式 ,温度 250℃;柱流量 1.0 mL•min⁻¹;炉温 70℃保持 1 min ,以 40℃ •min⁻¹升到 180℃ 保留 2 min ,再以 20℃ •min⁻¹升到 200℃ 保留 1 min ,再以 20℃ •min⁻¹升到 240℃ 保留 2 min ,最后以 2℃ • min⁻¹升到 250℃ 保留 2 min ,最后以 2℃ • min⁻¹升到 250℃ 保留 2 min ,载气为氦气 ,流量 1 mL•min⁻¹ 进样体积 5 L. 离子化能量为 70 eV. 离 子源(EI 源) 230℃ ,四极杆 150℃ ,倍增器电压 1 600 V 接口温度 200℃.

1.3 健康风险评价方法

致癌风险等于单位体重摄入的污染物浓度与癌 症斜率因子的乘积,用以衡量致癌化学物质的健康 风险^[11].根据美国环境保护署(USEPA)的化学物 质致癌分类标准,HCHs 被认为是可能的致癌物,参 照丁中原等^[12]研究中针对空气中 HCHs 风险评价 模型,王宗爽等^[13]研究中模型参数,对挖掘区居民 经呼吸暴露于 HCHs 进行致癌和非致癌风险评价, 呼吸暴露模型如下:

$$ADD_{\Psi W \not{B} \lambda} = \frac{c_A \times IR \times ED \times EF}{BW \times AT}$$

式中, ADD 为 经 呼 吸 途 径 的 日 均 暴 露 剂 量 ng·(kg•d)⁻¹; c_A 为空气中污染物浓度, mg•m⁻³; IR 指呼吸速率, m³•d⁻¹; ED 为暴露期, a; EF 为暴 露频率, d•a⁻¹; BW 为体重, kg; AT 指平均接触时 间 a. 相关参数见表 1.

致癌风险模型如下:

$$R_{\text{DECRS}} = \sum (\text{ADD} \times \text{SF}_i)$$

式中 R_{IFW} 指经呼吸暴露途径产生的致癌风险 ,SF_i 指 HCHs 的 致 癌 斜 率 因 子 , α -HCH 为 8.35 [mg·(kg•d) ⁻¹]⁻¹; β -HCH 为 2.46 [mg·(kg•d) ⁻¹]⁻¹; γ -HCH 为 1.80 [mg·(kg•d) ⁻¹]⁻¹; p,p´-DDT 为 0.34

Table 1	Exposure factors	of human for health	risk assessment					
	J	戓人		儿童				
泰路乡奴 	男性	女性	男性	女性				
IR(呼吸速率) /m ³ •d ⁻¹	13. 51	11. 55	5.71	5.58	[13,14]			
EF(暴露频率) /d•a ⁻¹	350	350	350	350	[15]			
BW(体重) /kg	62.7	54.4	10.6	10. 1	[16]			
ED(暴露期) /a	3	3	3	3				
AT(平均接触时间 非致癌/致癌)/a	3/69.6	3/73.3	3/69.6	3/73.3				

表1 健康风险评价人体暴露参数

[$mg \cdot (kg \cdot d)^{-1}$]⁻¹; p, p'-DDD 为 0.242 [$mg \cdot (kg \cdot d)^{-1}$]⁻¹; p, p'-DDE 为 0.34 [$mg \cdot (kg \cdot d)^{-1}$]⁻¹.

非致癌风险是每日单位体重摄入量与慢性参考 剂量的比值,非致癌风险模型如下:

$$HQ_{\Psi W} = \sum \left(\frac{ADD}{RfD_i}\right)$$

式中 HQ_{IFW} 经呼吸途径暴露产生的非致癌风险; ADD, 呼吸暴露量; RfD_i , 慢性参考剂量, 其中 α -HCH 为 5 × 10⁻⁴ mg·(kg·d)⁻¹; β -HCH 为 2 × 10⁻⁴ mg·(kg·d)⁻¹; γ -HCH 为 3 × 10⁻⁴ mg·(kg·d)⁻¹. p p'-DDT为 5 × 10⁻⁴ mg·(kg·d)⁻¹.

2 结果与讨论

2.1 挖掘过程中污染场地内及周边居民区空气中 HCHs 及 DDTs 污染

污染场地内空气中 HCHs 浓度在 141.9~211.9 ng•m⁻³之间,平均浓度为 172.4 ng•m⁻³; DDTs 浓度 在 324.0~909.5 ng•m⁻³之间,平均浓度为 480.0 ng•m⁻³,其平均浓度分别是对照点浓度的 305 倍和 471 倍.与已有报道其它地区空气中浓度相比,挖掘

区空气中 HCHs 和 DDTs 浓度高出 $10^2 \sim 10^3$ 个数量 级 显然 污染场地土壤挖掘过程中 扰动促进了土 壤中 HCHs 和 DDTs 向空气中扩散,提高了周围空 气中污染物的浓度. 挖掘过程中周边居民区空气中 HCHs 及 DDTs 浓度,平均值分别为 9.9 ng•m⁻³和 18.3 ng•m⁻³,范围分别为 5.2 ~ 15.1 ng•m⁻³和 13.2~25.1 ng·m⁻³. 与已有报道的其它地区空气 中浓度相比 HCHs 在居民区浓度明显高出很多(表 2),平均浓度是鞍山工业区冬季采暖期空气中 HCHs 浓度的 2 倍^[17]; 是长江三角洲地区浓度的 521 倍^[18]; 是广州空气中浓度的 106 倍^[19]; 是香港 空气中的 7.4 倍^[20]; 是韩国空气中的 139 倍^[21]; 是新加坡空气中浓度的 41 倍^[22]; 是美国新泽西州 大气中浓度的 220 倍^[23]. 同时,与其他国家和地区 相比研究区域明显 DDTs 污染较严重,平均浓度是 长江三角洲地区空气中浓度的 109 倍; 是广州空气 中浓度的 197 倍^[19]; 是印度旁遮普省空气中浓度 的 52 倍^[24]: 是美国新泽西州和加拿大新不伦瑞克 省空气中浓度的数百倍^[23].可见,污染场地的土壤 挖掘过程中导致了在污染场地内及周边区域空气中 HCHs 及 DDTs 污染.

表 2 其他地区大气中污染物含量/ng•m⁻³

	Table 2 Content of pollutants in th	e atmosphere of other regions/ng•m ⁻³	
	浓度均值	i±标准差	\\ ==+
区域	HCHs	DDTs	文献
	172. 4	480	本研究
居民区	9.9	18.3	本研究
对照点浓度	0. 565	1.02	本研究
鞍山工业区	6. 7	14. 2	[17]
长江三角洲地区	0.019 ± 0.032	0.168 ± 0.11	[18]
广州	0.093 ± 0.073	0.318 ± 0.279	[19]
香港	1. 33	_	[20]
韩国	0.071	_	[21]
新加坡	0.24 ± 0.089	—	[22]
美国新泽西州	0.045 ± 0.016	0.031 ± 0.025	[23]
加拿大新不伦瑞克省	0.149 ± 0.062	0.237 ± 0.106	[23]
印度旁遮普省	0.055 ± 0.037	0. 35 ± 0. 24	[24]

2.1.1 挖掘场地空气中 HCHs 和 DDTs 的垂直分布

在污染场内离地面不同高度处(15、30、60、 90、130、185 cm) 收集空气样品,分析不同高度空 气中 HCHs 和 DDTs 的浓度. 污染场地中 HCHs 和 DDTs 的浓度随高度变化如图 2 所示.

挖掘区空气中 DDTs 浓度随高度升高而降低, 离地面高度为 15 cm 时,DDTs 浓度为 909.5 ng•m⁻³;离地面 30 cm 时,DDTs 浓度为 516.7 ng•m⁻³;离地面 185 cm 时 DDTs 浓度为 324.0 ng•m⁻³.可见挖掘扰动过程会引起近地面空气中 DDTs 浓度增加,且高度是影响此过程中 DDTs 分 布的主要因素. 挖掘扰动过程中,HCHs 浓度呈波 动性降低,距离地面 15 cm 时,HCHs 浓度为 201.1 ng•m⁻³; 离地面 30 cm 时,HCHs 浓度为 211.9 ng•m⁻³; 离地面 185 cm 时 HCHs 浓度为 141.9 ng•m⁻³. 可见在挖掘扰动过程中会引起近地面空 气中 HCHs 的增加,但不同于 DDTs,HCHs 浓度呈 波动性降低,这可能是由于 HCHs 的蒸气压较 DDTs 高,挖掘扰动过程对 HCHs 的影响较为显著, 使得 HCHs 浓度波动性较强.

图 2 挖掘场地空气中 HCHs 和 DDTs 浓度

Fig. 2 HCHs and DDTs concentrations in the air of excavation area

2.1.2 场地周边居民区空气中 HCHs 和 DDTs 的垂 直分布

为研究场地挖掘对周边居民区空气质量的影 响,分别在居民楼不同楼层采样,分析 α -HCH、 β -HCH、 γ -HCH、 δ -HCH 这4种同系物及 Σ HCHs和 p p'-DDE、p p'-DDD、o p'-DDT、p p'-DDT 这4种 异构体和 Σ DDTs 浓度随高度的变化(如图3).

分析 居 民 区 空 气 中 HCHs 和 DDTs 浓度 (ng•m⁻³)与离地面高度(cm)的相关性发现,HCHs 浓度与高度呈显著负相关(P < 0.05, n = 33)相关 系数为 0.67. α-HCH 和 γ-HCH 浓度与高度极显著 负相关(P < 0.05, n = 33)相关系数分别为 0.81 和 0.72 β-HCH 浓度与高度呈显著负相关 δ-HCH 浓 度与高度相关性不显著. DDTs 浓度与高度呈显著 负相关(P < 0.05, n = 33)相关系数为 0.41. p p'-DDE、p p'-DDD、o,p'-DDT 和 p,p'-DDT 浓度均与 高度呈负相关,p p'-DDE 相关性较小,相关系数为 0.03 其它 3 种异构体浓度与高度的相关系数在 0.24~0.29 之间. 由此可见,场地中 HCHs 和 DDTs 在空气中分布不仅与污染物本身性质有关,同时也 与离地面高度有关.

2.1.3 挖掘过程中周边居民区空气中 HCHs 及 DDTs 季节分布特征

为了考察不同季节污染场地空气中污染物的变化,挖掘过程中分别在春季、夏季、秋季和冬季收 集空气样品,分析居民区空气中 HCHs 及 DDTs. 不 同季节污染场地空气中 HCHs 及 DDTs 浓度列于 表 3.

如表 3 所示, HCHs 春季的浓度为 5.78~16.3 ng•m⁻³,均值为 8.63 ng•m⁻³;夏季为 3.17~8.05 ng•m⁻³,均值为 6.09 ng•m⁻³;秋季为 5.42~55.2 ng•m⁻³,均值为 16.7 ng•m⁻³;冬季为 5.65~133 ng•m⁻³,均值为 28.6 ng•m⁻³, HCHs 浓度呈现出秋 冬季节高而春夏季较低的特点,各异构体也表现出 了相似的特征,其中最高均值出现在冬季(28.6 ng•m⁻³).冬季空气中 HCHs 浓度高,可能是由于冬 季空气稳定度较高,容易形成逆温效应,不利于 HCHs 的扩散;秋季空气中 HCHs 浓度高可能是由 于秋季温度高,利于土壤中 HCHs 向空气中挥

发^[11]. 空气中 HCHs 浓度最低均值出现在夏季 这 可能是由于该地区夏季降雨多,空气中 HCHs 经雨 水冲刷而使得其浓度降低. DDTs 春季浓度为 6.23 ~26.4 ng·m⁻³ 均值为 15.1 ng·m⁻³; 夏季浓度为 6.86~46.3 ng•m⁻³,均值为 32.4 ng•m⁻³; 秋季浓 度为 54.5~388 ng•m⁻³ 均值为 200 ng•m⁻³; 冬季浓 度为4.48~2800 ng•m⁻³,均值为457 ng•m⁻³,呈现 出与 HCHs 相似的季节变化规律 均为秋冬季节高而 春夏季节较低 春季空气中 DDTs 浓度较低一方面可 表 3 挖掘过程中周边居民区空气中 HCHs 及 DDTs 浓度范围及平均值/ng·m⁻³

能是由于该地区春季多雨 经雨水冲刷作用去除空气 中部分 DDTs ,另一方面春季多风 ,平均风速在 2.9 m•s⁻¹ 部分地区最高可达 27.0 m•s⁻¹ 加强了空气中 DDTs 的扩散 因此春季空气中 DDTs 浓度为全年最 低. 显然 空气中 HCHs 和 DDTs 污染浓度不仅是由 于温度降低 挥发量减少 污染浓度降低 而且大气不 稳定及雨水的冲刷也使得污染浓度降低. 可见 尽量 在春夏季节较低气温时段施工 可减少在修复该类污 染场地过程中 HCHs 和 DDTs 的污染浓度.

					0	
Table 3 Bange	and average of HCH	s and DDTs concentr	ations in residential are	a during	σ excavation / nσ•m [−]	- 3

	Table 5	italige and average of fields	and DD13 concentrations in I	concential area during excavatio	ii/iig iii
;二:为:#加			污染物浓度药	范围(平均浓度)	
污采初		春季	夏季	秋季	冬季
α-HCH		1.92~8.87(4.01)	1.48 ~ 4.51(2.92)	2.64 ~42.2(11.9)	2.41~48.7(10.5)
β -HCH		1.01 ~ 3.65(1.82)	0.50~2.03(1.52)	0.25 ~ 4.74(1.93)	1.72 ~17.3(6.25)
γ-HCH		0.55~1.96(1.05)	0.48 ~1.54(1.10)	0.50~5.90(1.73)	0.39 ~37.2(5.99)
δ -HCH		0.30~2.83 (1.75)	0.39 ~ 0.85(0.55)	0.18~2.35(1.08)	1.12 ~ 30.2(5.91)
p p´-DDE		2.11 ~23.7(7.92)	4.17~25.2(17.5)	6.02 ~ 70.4(24.3)	1.77~2250(317)
p_p´-DDD		0.49~2.17(1.46)	0.53~10.3(3.41)	0.38~12.6(2.33)	0.30~644(80.6)
o p´-DDT		1.63 ~ 4.21(3.32)	1.53~11.9(7.86)	2.5 ~ 36.1(8.34)	1.64 ~317(46.4)
p p´−DDT		0.57 ~ 3.30(2.41)	0.63 ~ 5.06(3.65)	0.43 ~10.7(2.68)	0.19~77.1(12.9)
\sum HCHs		5.78 ~ 16.3(8.63)	3.17~8.05(6.09)	5.42 ~ 55.2(16.7)	5.65 ~133(28.6)
DDTs		6.23~26.4(15.1)	6.86~46.3(32.4)	54.5 ~388(200)	4.48 ~2800(457)

2.2 致癌风险

2.2.1 不同季节经呼吸暴露途径的致癌风险

场地空气中 HCHs 和 DDTs 对周边居民区健康 风险主要暴露途径是经呼吸暴露途径. 应用健康风 险评价模型 分析了在场地挖掘扰动过程中 场地周 边居民区空气中 HCHs 和 DDTs 经呼吸暴露途径对 儿童和成人的致癌风险. 表4 列出了经呼吸暴露途 径不同季节 HCHs 和 DDTs 的致癌风险. 从中可见, 大多成年人点位 HCHs 的致癌风险均低于可接受水 $\Psi(1.0 \times 10^{-6})^{[25]}$,其中成年女性的致癌风险大多 在 0. 26 × 10⁻⁶ ~ 0. 81 × 10⁻⁶ 之间,成年男性的致癌 风险大多在 0.18 × 10⁻⁶ ~ 0.83 × 10⁻⁶ 之间: 幼年经 呼吸暴露途径产生一定程度的致癌风险 54.35% 点 位中幼年男性的致癌风险在 $1.00 \times 10^{-6} \sim 2.65 \times$

						オ	₹4	小同ミ	₽́р I	ICHS	和DI	JIS H	」致癌	XII应"	× 10	0																			
					Гable	e4 (Carcin	ogenic	risk	of HC	Hs an	d DDI	ls in c	lifferer	nt seas	sons >	< 10 - 6	5																	
	春							夏																											
₩ ₽	成年			儿童				成年			儿童			成年				儿童																	
俊层	男	女		男		女		男		女		男		女		男		女		男		女													
	HCHs DDTs	HCHs D	DTs H	ICHs D	DTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs												
2	0.45 0.05	0.58 0.	04 1	1.55 0	. 10	1.10	0.10	0.39	0.09	0.51	0.08	1.40	0.20	0.95	0.2	0.45	0.01	0.55	0.01	0.38	0.004	1.10	0.02												
3	0.76 0.04	1.00 0.	03 2	2.65 0	. 10	1.85	0.10	0.33	0.08	0.45	0.06	1.20	0.20	0.8	0.15	0.48	0.01	0.60	0.01	0.40	0.01	1.15	0.05												
4	0.26 0.03	0.35 0.	03 (0.95 0	. 05	0.65	0.05	0.29	0.06	0.39	0.05	1.05	0.15	0.7	0.15	0.19	0.00	0.28	0.00	0.19	0.00	0.45	0.01												
5	0.35 0.04	0.48 0.	04 1	1.25 0	. 10	0.85	0.10	0.18	0.06	0.26	0.06	0.70	0.15	0.45	0.15	0.66	0.01	1.08	0.01	0.73	0.01	1.60	0.05												
7	0.44 0.04	0.61 0.	04 1	1.65 0	. 10	1.05	0.10	0.31	0.09	0.46	0.09	1.25	0.25	0.75	0.2	0.83	0.04	1.56	0.04	1.05	0.03	2.00	0.10												
8	0.40 0.04	0.49 0.	03 1	1.30 0	. 10	1.00	0.10	0.29	0.09	0.44	0.09	1.20	0.20	0.7	0.2	0.41	0.01	0.53	0.01	0.35	0.01	1.00	0.05												
10	0.29 0.03	0.44 0.	03 1	1.15 0	. 05	0.70	0.05	0.35	0.10	0.48	0.10	1.30	0.25	0.85	0.25	0.31	0.01	0.45	0.01	0.30	0.01	0.75	0.02												
12	0.29 0.04	0.38 0.	04 1	1.00 0	. 10	0.70	0.10	0.23	0.06	0.34	0.06	0.90	0.15	0.55	0.15	0.55	0.01	0.81	0.01	0.55	0.01	1.35	0.05												
14	0.43 0.04	0.50 0.	04 1	1.35 0	. 10	1.05	0.10	0.21	0.05	0.31	0.05	0.85	0.15	0.5	0.15	1.65	0.01	1.86	0.01	1.25	0.01	4.00	0.05												
15	0.26 0.04	0.35 0.	04 (0.95 0	. 10	0.65	0.10	0.25	0.08	0.36	0.08	0.95	0.20	0.6	0.2	0.39	0.01	0.60	0.01	0.40	0.01	0.95	0.05												
17	0.25 0.03	0.34 0.	03 (0.90 0	. 10	0.60	0.10	0.26	0.06	0.38	0.06	1.00	0.15	0.65	0.15	0.33	0.01	0.50	0.01	0.34	0.01	0.80	0.02												
20	0.28 0.03	0.38 0.	03 1	1.00 0	. 05	0.70	0.05	0.28	0.06	0.39	0.06	1.05	0.15	0.65	0.15	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.	n. d.												

1) n. d. 为未检出

 10^{-6} 之间 *3*4.3% 幼年女性致癌风险在 $1.0 \times 10^{-6} \sim 4.0 \times 10^{-6}$ 之间. 幼年男性致癌风险最高 ,成年男性 致癌风险最低. 挖掘场地居民区空气中 DDTs 的致 癌风险范围在 $0.25 \times 10^{-8} \sim 0.25 \times 10^{-6}$ 之间 ,低于 可接受水平(1.0×10^{-6}).

根据美国 EPA 在国家风险计划中建立的健康 风险评价基准^[26],多种化学物质的同一暴露途径的 综合致癌风险为该暴露途径下,各化学物质的致癌 风险之和,低于 1.0×10^{-6} 为可接受水平.本研究 中 HCHs 和 DDTs 的综合致癌风险在 $0.18 \times 10^{-6} ~$ 4.25×10^{-6} 之间,其中 69.30%点位低于可接受水 平(1.0×10^{-6}).但为降低挖掘过程对幼年产生的 致癌风险,应采取措施如喷洒抑制剂等,以减少污染 物向居民区扩散.

图4 居民区空气中综合致癌风险与高度的关系

Fig. 4 Relationship between carcinogenic risk in residential air and the height

表 5 致癌风险与高度的关系

Table 5	Delationshin	h atrus an		l.	and	the height
Table 5	Relationship	between	carcinogenic	FISK	ana	the neight

类别	致癌风险与高度的关系	相关系数
成年男性	$y = -0.003\ 2\ x + 0.503\ 8$	$R^2 = 0.0793(n = 36)$
成年女性	y = -0.0045 x + 0.6844	$R^2 = 0.1019(n = 36)$
幼年男性	y = -0.0125 x + 1.8469	$R^2 = 0.1049(n = 36)$
幼年女性	y = -0.0073 x + 1.2218	$R^2 = 0.0722(n = 36)$

2.2.2 离地面不同高度的致癌风险

挖掘场地居民区空气中 HCHs 的致癌风险与垂 直高度有一定相关性(表5和图4).主要表现为, 春季2、3层居民较其他楼层致癌风险高,冬季7 层、14层附近居民较其他楼层致癌风险高.这可能 是由于春夏季风速较高,大气稳定度低,利于高层中 HCHs 扩散,而春季气温升高,使得冬季沉积在地表 土壤中 HCHs 挥发至近地面,所以低楼层居民致癌 风险较高;冬季空气较为稳定,容易形成逆温层,使 得高楼层空气中 HCHs 不易扩散,而冬季气温低,部分 HCHs 沉降到地表土壤中,所以冬季高楼层居民 致癌风险较高,低楼层致癌风险相对较低. DDTs 致 癌风险随垂直高度的变化趋势同 HCHs 有相似 特点.

2.3 非致癌风险

当污染物的单一暴露途径非致癌风险 HI < 0.1 时,认为非致癌风险较小或可以忽略,HI > 0.1 时认 为存在非致癌风险^[26].多种化学物质的同一暴露 途径的综合非致癌风险为该暴露途径下各化学物质 的非致癌风险之和,低于 0.1 为可接受水平^[26].分 析在场地挖掘扰动过程中,场地周边居民区空气中 HCHs 和 DDTs 经呼吸暴露途径对儿童和成人的非 致癌风险如表 6 所示,挖掘场地居民区附近 HCHs 经呼吸暴露途径产生的成人的非致癌风险在 1.83 ×10⁻³~4.52×10⁻²之间,低于非致癌风险可接受 水平. DDTs 经呼吸暴露途径产生的成人的非致癌 风险在 0.12×10⁻³~2.14×10⁻³之间,低于非致癌 风险可接受水平; 儿童的非致癌风险在 1.74×10⁻² ~0.53 之间,具有一定程度的非致癌风险. HCHs 和 DDTs 综合非致癌风险在 2.99 × 10⁻² ~ 0.54 之 间 因此 场地挖掘过程中 *5*7.64% 点位经呼吸暴露 途径对居民区产生的综合非致癌风险低于可接受水 平(HI < 0.1).

	表6	不同季节	HCH	s和 DI	DTs 的非郅	致癌	「风险 ¹⁾ >	< 10 ⁻³	
Table 6	Nonca	rcinogenic	risk of	HCHs	and DDTs	s in	different	seasons	$\times 10^{-3}$

			春				夏															
								Б	战年		儿童					成	年		JL	童		
层	男	女		男		女		男		女		男		女	男		女		男	女		
	HCHs DDT	s HCHs DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs	DDTs	HCHs DDTs	HCHs	DDTs	HCHs	DDTs	
2	4.64 1.16	5 4. 58 1. 22	11.60	274.92	12.22	283.43	4.35	1.74	2.75	1.53	10.44	400.20	11.00	411.70	4.64	0.29	4.58 0.12	11.60	33.64	12.22	34.21	
3	8.70 1.16	5 8.55 1.22	22.04	273.76	21.99	280. 98	4.06	1.45	2.75	1.53	10.44	364.24	9.77	375.05	4.93	0.29	4.89 0.31	12.76	87.00	12.22	89.18	
4	2.90 0.87	7 3.05 0.92	6.96	227.36	7.33	234.56	3.48	1.45	2.44	1.22	9.28	330.60	8.55	340.85	2.61	0.00	2.75 0.00	6.96	20.88	7.33	20.77	
5	4.06 1.45	5 3.97 1.22	10.44	339.88	11.00	349.40	2.61	1.16	1.83	0.92	6.96	252.88	6.11	260. 22	11.60	0.29	11. 30 0. 31	29.00	96.28	29.32	98.96	
7	5.51 1.16	5 5. 50 1. 22	13.92	310.88	14.66	320.08	4.35	2.03	3.05	2.14	11.60	506.92	11.00	522. 88	18.27	0.87	18.02 0.92	45.24	207.64	46.42	213. 79	
8	4.06 1.16	5 3.97 1.22	10.44	266.80	9.77	274.88	4.06	2.03	2.75	1.83	10.44	473.28	11.00	487.45	4.35	0.58	4.28 0.61	11.60	113.68	11.00	116.06	
10	4.35 0.87	7 4. 28 0. 92	10.44	228.52	11.00	234.56	4.35	2.03	2.75	2.14	10.44	517.36	11.00	533.87	4.35	0.29	4.28 0.31	10.44	58.00	11.00	59.86	
12	3.19 1.10	5 3.05 1.22	8.12	269.12	8.55	277.32	3.19	1.45	2.14	1.53	8.12	358.44	8.55	370.17	8.12	0.58	7.94 0.61	19.72	114.84	20.77	117.28	
14	4.06 1.16	5 3.97 1.22	10.44	284.20	9.77	291.98	2.90	1.16	1.83	1.22	6.96	298.12	7.33	306.64	14.21	0.29	14.05 0.31	35.96	103.24	36.65	106. 29	
15	3.19 1.16	5 3.05 1.22	8.12	315.52	8.55	324.97	3.48	1.45	2.14	1.53	8.12	375.84	8.55	387.27	6.09	0.29	5.80 0.31	15.08	75.40	15.88	78.19	
17	2.90 1.16	5 2.75 1.22	6.96	274.92	7.33	282. 21	3.48	1.16	2.14	1.22	8.12	319.00	8.55	328.63	5.22	0.29	4.89 0.31	12.76	53.36	13.44	54.98	
20	3. 19 0. 87	7 3.36 0.92	8.12	214.60	8.55	221.12	3.48	1.16	2.44	1.22	9.28	291.16	8.55	300.53	n. d.	0.00	n. d. 0.00	n. d.	17.40	n. d.	18.33	
1)		A . I .																				

1) n. d. 为未检出

3 结论

污染场地挖掘点和场地旁边居民区空气中 HCHs 和 DDTs 浓度随高度增加而降低. 污染场地 挖掘点周边居民区空气中 HCHs 和 DDTs 浓度呈现 出秋冬季节高 春夏季节较低的特点,可见春夏季节 施工可减少二次污染产生. 挖掘区空气中 HCHs 经 呼吸暴露途径对成年居民产生致癌风险低于可接受 水平,但对幼年产生一定程度的致癌风险; 挖掘区 周边居民区春季低楼层致癌风险相对较高,冬季高 楼层致癌风险与空气稳定度有关. 挖掘区附近成年 居民经呼吸暴露途径产生的综合非致癌风险低于可 接受风险水平,但挖掘区附近幼年居民经呼吸暴露 途径产生一定程度的非致癌风险. 因此,该类污染 场地挖掘过程中应采取措施抑制挖掘区污染物向空 气扩散,以降低风险.

参考文献:

- [1] 薛南冬,李发生. 持久性有机污染物(POPs) 污染场地风险 控制与环境修复[M]. 北京: 科学出版社,2011.
- [2] Yang Y , Tao S , Wong P K , et al. Human exposure and health risk of a-, b-, c-and d-hexachlorocyclohexane (HCHs) in Tianjin , China [J]. Chemosphere , 2005 , 60(6): 753-761.
- [3] Alamdar A, Syed J H, Malik R N, et al. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: Contamination levels and their potential for air-soil exchange [J]. Science of the Total

Environment, 2014, 470-471: 733-741.

- [4] Wong M H, Leung A O W, Chan J K Y, et al. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk [J]. Chemosphere, 2005, 60(6): 740– 752.
- [5] Willett K L, Ulrich E M, Hites R A. Differential toxicity and environmental fates of hexachlorocyclohexane isomers [J]. Environmental Science and Technology, 1998, 32(15): 2197– 2207.
- [6] Zhu Y F, Liu H, Xi Z Q, et al. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China [J]. Chemosphere, 2005, 60(6): 770–778.
- [7] Da C N, Liu G J, Yuan Z J. Analysis of HCHs and DDTs in a sediment core from the Old Yellow River Estuary, China [J]. Ecotoxicology and Environmental Safety, 2014, 100: 171– 177.
- [8] Feng J L , Zhai M X , Liu Q , et al. Residues of organochlorine pesticides (OCPs) in upper reach of the Huaihe River , East China [J]. Ecotoxicology and Environmental Safety , 2011 , 74 (8): 2252–2259.
- [9] He W, Qin N, He Q S, et al. Characterization, ecological and health risks of DDTs and HCHs in water from a large shallow Chinese lake [J]. Ecological Informatics, 2012, 12: 77–84.
- [10] 张胜田,林玉锁,华小梅,等.中国污染场地管理面临的问题及对策[J].环境科学与管理,2007,**32**(6):221-231.
- [11] www. epa. gov/iris/.
- [12] 丁中原,毛潇萱,马子龙,等.河西走廊及兰州地区典型有 机氯农药的大气残留及时空分布特征[J].环境科学,2013, 34(4):1258-1263.

- [13] 王宗爽,武婷,段小丽,等.环境健康风险评价中我国居民 呼吸速率暴露参数研究[J].环境科学研究,2009,22(10): 1171-1175.
- [14] 段小丽. 暴露参数的研究方法及其在环境健康风险评价中的 应用[M]. 北京: 科学出版社, 2012.
- [15] 周玲莉,吴广龙,薛南冬,等.废旧电容器封存点土壤中的 PCBs 污染特征和健康风险评价[J].环境科学,2014,35 (2):704-710.
- [16] 王陇德. 中国居民营养与健康状况调查报告之一: 2002 综合 报告[M]. 北京: 人民卫生出版社, 2005.
- [17] 田靖. 鞍山大气中有机氯农药的污染特征研究[J]. 中国环 境监测, 2010, 26(3): 11-13.
- [18] Zhang L F , Dong L , Yang W L , et al. Passive air sampling of organochlorine pesticides and polychlorinated biphenyls in the Yangtze River Delta , China: Concentrations , distributions , and cancer risk assessment [J]. Environmental Pollution , 2013 , 181: 159–166.
- [19] Yang Y Y, Li D L, Mu D H. Levels, seasonal variations and sources of organochlorine pesticides in ambient air of Guangzhou, China [J]. Atmospheric Environment, 2008, 42(4): 677-687.
- [20] Wang J, Guo L L, Li J, et al. Passive air sampling of DDT, chlordane and HCB in the Pearl River Delta, South China:

implications to regional sources [J]. Journal of Environmental Monitoring , 2007 , 9(6): 582-588.

- [21] Jin G Z , Kim S M , Lee S Y , et al. Levels and potential sources of atmospheric organochlorine pesticides at Korea background sites [J]. Atmospheric Environment , 2013 , 68: 333–342.
- [22] He J, Balasubramanian R, Karthikeyan S, et al. Determination of semi-volatile organochlorine compounds in the atmosphere of Singapore using accelerated solvent extraction [J]. Chemosphere, 2009, 75(5): 640-648.
- [23] Syed J H , Malik R N , Liu D , et al. Organochlorine pesticides in air and soil and estimated air-soil exchange in Punjab , Pakistan [J]. Science of the Total Environment , 2013 , 444: 491-497.
- [24] Gioia R , Offenberg J H , Gigliotti C L , et al. Atmospheric concentrations and deposition of organochlorine pesticides in the US Mid-Atlantic region [J]. Atmospheric Environment , 2005 , 39(12): 2309-2322.
- [25] US EPA. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions [R]. Washington DC: Office of Solid Waste and Emergency Response, 1991.
- [26] US EPA. Guidance for conducting risk assessments and related risk activities for the DOE ORO environmental management program [R]. Tennes: Bechtel Jacobs Company, 1999.