H₂O₂ 与 UV 工艺对铜绿微囊藻灭活特点比较

郭建伟¹,张永吉^{1*},曾果¹,周玲玲²,高乃云²

(1. 长江水环境教育部重点实验室(同济大学),上海 200092; 2. 同济大学污染控制与资源化研究重点实验室,上海 200092)

摘要:以铜绿微囊藻为研究对象,考察了H₂O₂与 UV 工艺对铜绿微囊藻的灭活特点及光合活性的影响.结果表明,在 0~2 mmol·L⁻¹H₂O₂投加范围内,随H₂O₂投加量的增大,对铜绿微囊藻的灭活效果不断提高,藻的光合活性不断下降;而投加量超过 2 mmol·L⁻¹后,灭活率并无明显提高;UV 工艺对铜绿微囊藻有较好的灭活效果,在藻浓度为 35×10⁸ 个/L 条件下,紫外线剂 量达 91.8 mJ·cm⁻²即可使藻停滞生长 7 d 以上;UV 工艺对藻光合活性的降低效率高于H₂O₂工艺,且各活性参数随紫外线剂 量的升高呈指数衰减;在达到较好的灭活效果时,UV 工艺对藻液 UV₂₅₄升高的控制优于H₂O₂工艺.

关键词:铜绿微囊藻; H_2O_2 ;紫外线照射;灭活;光合活性

中图分类号:X173 文献标识码:A 文章编号:0250-3301(2010)08-1801-06

Comparison of H_2O_2 and UV Processes on the Inactivation Efficiency of *Microcystic aeruginosa*

GUO Jian-wei¹, ZHANG Yong-ji¹, ZENG Guo¹, ZHOU Ling-ling², GAO Nai-yun²

(1. Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), Shanghai 200092, China; 2. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China)

Abstract: Setting *Microcystic aeruginosa* as study subject, the inactivation efficiency and its effect on photosynthetic activity by H_2O_2 and UV processes were investigated. The results showed that the inactivating efficiency increased with H_2O_2 dosage in the range of O-2 mmol·L⁻¹, and the photosynthetic activity decreased with it gradually, but the efficiency wasn't enhanced when the dosage exceeded 2 mmol·L⁻¹. The inactivation by UV process was high. Under the algae concentration of 35×10^8 cells/L, UV dosage of 91.8mJ/cm² was enough to inhibit its growth by 7d; UV process was superior to H_2O_2 in terms of photosynthetic activity, also the parameters could be fitted exponentially well; To guarantee high removal of algae, H_2O_2 must be dosed excessively, so UV_{254} of algae solution would be higher than that of UV process.

Key words: Microcystic aeruginosa; H2O2; UV irradiation; inactivation; photosynthetic activity

高藻水处理是水处理界普遍关心的问题之一. 高藻水一般具有高浊度、高有机物的特征,藻类的分 泌物是饮用水消毒副产物的前体物,藻类的存在会 消耗更多的混凝剂与消毒剂、产生堵塞滤池及在沉 淀池或清水池池壁滋生黏泥等问题^[1].鉴于水源水 质的不断恶化及对给水厂出厂水水质的要求不断提 高,寻找一种经济、高效且安全的除藻技术成为一个 十分紧迫的问题.

投加硫酸铜或其它化学氧化剂虽然除藻效果显 著,但由于对藻细胞的破坏,容易导致藻毒素的大量 释放,并且投加的化学物质往往也会对水体产生二 次污染^[2~4]. H₂O₂是一种无二次污染的氧化剂,其氧 化还原电位高于 KMnO₄,对藻类具有较好的灭活效 果.紫外线技术可以有效地抑制藻类生长,由于不投 加任何化学试剂,不会产生残留的有毒物质,是一种 绿色高效的新型除藻技术^[5~8].本研究对比了H₂O₂ 与 UV 工艺对铜绿微囊藻的灭活特点及活性的影 响,以期为实际应用提供理论指导.

1 材料与方法

1.1 铜绿微囊藻的培养

铜绿微囊藻藻种(FACHB-912)购自武汉水生 生物研究所,采用 BG11 培养基进行培养. 铜绿微囊 藻母液在恒温培养箱中 25℃ ±1℃下进行培养,培 养箱内光照强度为1 500 lx,光暗周期为 12 h:12 h. 实验时,取一定量处于对数期的藻母液用灭菌 BG11 培养基稀释得到浓度为 35 × 10⁸ 个/L 的实验使 用液.

1.2 实验过程

基金项目:国家自然科学基金项目(50878164);长江水环境教育部 重点实验室自主课题项目(YRWEY1001);国家水体污染 控制与治理科技重大专项(2008ZX07422-005)

收稿日期:2009-08-24;修订日期:2010-02-10

作者简介:郭建伟(1984~),男,硕士研究生,主要研究方向为水处 理理论与技术, E-mail:guojianweil1@126.com

^{*} 通讯联系人 E-mail: zhangyongji@ tongji.edu.cn

1.2.1 紫外线实验

实验装置采用按国际紫外线协会推荐标准制作 的准平行光束仪(collimated beam apparatus),装置 如图 1 所示.紫外灯管安装在一个封闭的圆柱体内, 在简体的底部中央开口,下端接一段长度为 44 cm, 外径为 10.8 cm 的圆管,紫外灯管功率为 75 W,额 定工作电压为 220 V.实验时取 40 mL 藻液,采用 10.5 cm 直径的培养皿作反应器,根据国际紫外线 协会提供的计算表格计算紫外线的平均强度^[9,10], 其平均光强为 0.153 mW/cm²,通过改变照射时间 来获得不同的紫外线剂量.

图 1 准平行光束仪装置示意 Fig. 1 Schematic diagram of collimated beam device

1.2.2 H₂O₂氧化实验

 H_2O_2 采用 30% 的分析纯,每次使用前用 0.01 mol·L⁻¹的 KMnO₄ 标准溶液标定其真实浓度. 实验 藻浓度为 35×10⁸ 个/L,取 40 mL 的藻液分别投加 10、30、50、100、150、200 及 300 μ L 的 8.8×10⁻² mol/L的 H_2O_2 母液,分别得到 2.2、6.59、10.99、21.98、39.57、52.76 及 79.14 mmol/L H_2O_2 投加量.

1.3 实验方法

 D_{680} 和 UV₂₅₄采用 UV1800 型紫外/可见分光光 度计测定,因 D_{680} 与叶绿素等含量成正比关系,本研 究中以 D_{680} 反映藻类的数量;藻的光合量子产量 *Y* (*Y* 值反映藻细胞的光合效率)及快速光响应曲线 (rapid light curves ,RLC)采用叶绿素荧光分析技术 (PHYTO-PAM,德国 Walz 公司)测定.快速光响应 曲线的测量条件设定为:步长 20 s,最大光照强度 1 164 μ mol•(m²•s)⁻¹. α 、 P_m 、 L_k 由如下 RLC 方程拟 合得到^[11,12].

 $P = P_{m} \cdot (1 - \alpha \cdot PAR/P_{m}) \cdot e^{-\beta \cdot PAR/P_{m}}$ 式中, PAR 为光强, μ mol $\cdot (m^{2} \cdot s)^{-1}$; P 为相对电子

传递速率; P_{m} 为最大相对电子传递速率,反映最大 光合速率; α 为初始斜率,反映了光能的利用效率; L_{k} 为半饱和光强,反映了藻细胞对强光的耐受能 力, $L_{k} = P_{m}/\alpha$.

2 结果与讨论

2.1 H₂O₂与 UV 工艺对铜绿微囊藻的灭活效果 比较

2.1.1 高浓度H₂O₂对铜绿微囊藻的灭活效果

从图 2 可见, H_2O_2 对藻有较好的灭活效果,如 在 H_2O_2 投加量为 2.2 mmol/L时,1 d 后其 D_{680} 为 0.086,为初始的 53.09%;4 d 后其 D_{680} 为 0.047,为 初始的 29.01%. H_2O_2 在第 1 d 的去除率最高,而后 续 3 d 的去除率则较低,这是因为 H_2O_2 属于化学氧 化灭活,其效果比较明显但随着氧化剂的消耗及分 解使得后期的灭活效果逐渐降低.此外,增大投加量 并未取得更高的灭活效果,在 H_2O_2 投加量为 79.14 mmol/L时,1 d 后其 D_{680} 为 0.087,为初始的 53.70%;4 d 后其 D_{680} 为 0.049,为初始的 30.25%, 其投加量为 2.2 mmol/L的近 36 倍,而其灭活效果 并无明显提高.

图 2 高浓度H₂O₂对铜绿微囊藻生长曲线的影响

Fig. 2 Effects of high concentration of H_2O_2 on growth curvature of *Microcystic aeruginosa*

一般来讲,氧化剂的灭活机制主要是以下两方 面:第一步是氧化剂氧化破坏细胞壁和细胞膜;其次 是氧化剂扩散入细胞内进而灭活酶、破坏胞内物质 及干扰蛋白质的合成.影响反应第一步的主要因素 是氧化剂的标准氧化还原电位;影响第二步扩散的 主要因素是氧化剂的电荷、分子量以及半衰期.考虑 到H₂O₂的电位较高,因此,第二步传质反应是整个 反应的控制步骤.H₂O₂分子较难进入细胞内部,这 可能是增大H₂O₂的投加量,其灭活效果并无明显提 高的原因. Mamane 等^[13,14] 也发现单独H₂O₂ 对 *E. coli*、*B. subtilis*、MS-2、T4 和 T7 基本无灭活效 果,且•OH的灭活效果也较差,二者较难扩散到病毒 及细菌细胞内可能是其较低消毒效率的主要原因. 2.1.2 低浓度H₂O₂对铜绿微囊藻的灭活效果

为了找到最佳的H₂O₂投加量,实验同时考察了 $0 \sim 2 \text{ mmol/L H}_2O_2$ 投加量的灭活效果. 其结果见图 3. 结果表明 0.3 mmol/L 的H₂O₂投加量即开始出现 明显的灭活效果. 培养 1 d 后,总的藻密度 D_{680} = 0.096,为初始值的 61.94%; 然而培养 7 d 后,其 D₆₈₀ = 0.237,为初始值的153%,这表明H₂O₂的投加 量较小,随着H₂O₂的浓度降低,其灭活抑制作用逐 渐减弱.而在H₂O₂投加量为2 mmol/L时,培养1 d 后 其总的 D₆₈₀为 0.096,7 d 后其 D₆₈₀为 0.045. 与 0.3 mmol/L效果相比较,发现第1d的去除率并未随投 加量的增大而显著提高,但在第7d效果则十分明 显.这表明,H,O,氧化除藻时在投加量达到一定值 后 其短时间灭活效果并不会随投加量增大而显著 提高,但增大投加量会起到延长抑制其生长的作用. 将每一投加量下藻浓度开始出现增长的时刻与 H₂O₂的投加量进行对比,其结果见表 1. 可以看出, H₂O₂投加量越大,其开始出现增长的时刻越晚,且 增长时的藻密度越小 即说明投加量越大 ,灭活效果 越好.

Fig. 3 Effects of low concentration of H_2O_2 on growth curvature of *Microcystic aeruginosa*

2.1.3 UV 工艺对铜绿微囊藻的灭活效果

实验中藻的初始浓度约为 35 × 10⁸ 个/L(D₆₈₀ =0.155),紫外线光强为 0.153 mW/cm²,照射时间 为 0、5、10、15、20、30、45、60 min 得到相应的紫 外线剂量为 0、45.9、91.8、137.7、183.6、275.4、 413.1、550.8 mJ/cm².实验结果见图 4. 由图 4 可 知,紫外线对铜绿微囊藻有很好的灭活效果,并能显 著抑制其生长.在紫外线剂量仅为91.8 mJ·cm⁻² 下,铜绿微囊藻出现明显停滞生长现象.在该剂量下 照射后1 d 其 D_{680} 达到 0.201,而对照组的 D_{680} 为 0.249,藻密度相比降低近19.28%;而在紫外线剂 量达到550.8 mJ·cm⁻²时,7 d 后 D_{680} 仅为0 d 时的 21.52%,这说明在此剂量下,藻直接进入了衰亡期. 紫外线可以破坏细胞的 DNA,与细胞膜、线粒体或 细胞膜内某些组分作用产生自由基、活性氧等,继而 发生脂质过氧化反应,最终影响藻细胞的增殖.

表1 H₂O₂投加量与藻浓度开始增长时刻及藻密度的关系

Table 1 Relationship of initial increase time and algae

	concentration	with dosages of H_2	202
H_2O_2 浓度	藻浓度开始	增长时的藻	夕 注
$/ \mathrm{mmol} {}^{ullet} \mathrm{L} {}^{-1}$	增长时刻/d	密度(D ₆₈₀)	留注
0	1	0.204	未进入衰亡期
0.1	1	0.177	未进入衰亡期
0.3	3	0.098	
0.5	4	0.104	
1.0	5	0.073	
1.5	>7	< 0.058	
2.0	>7	< 0.045	

Fig. 4 Effects of UV dosages on growth curvature of Microcystic aeruginosa

对比 UV 与 H_2O_2 的灭活曲线可以发现,UV 的灭 活相对比较缓和,经紫外线照射的藻,其生长活性迅 速减弱,但并不会迅速导致大量细胞死亡.紫外线剂 量≥91.8 mJ·cm⁻²时在随后的7 d 内基本处于停滞 生长或衰亡期;而 H_2O_2 的灭活则比较迅速,1 d 后藻 的去 除 率 为 最 高,但在 H_2O_2 投 加 量 小(<2 mmol·L⁻¹)时,藻会较快的恢复生长.总体来讲,UV 的灭活效果要优于 H_2O_2 工艺.

2.2 H₂O₂与 UV 工艺对铜绿微囊藻光合活性的影响
 实验 中 藻 的 D₆₈₀ = 0.155, 藻密 度 为 35 × 10⁸

个/L. 考察了 0、0.1、0.3、0.5、1.0、1.5 及 2.0 mmol/L H₂O₂投加量下,反应 15 min 后光合活性的 变化. 结果见表 2.

表 2 H₂O₂ 投加量对藻光合活性的影响

Table 2Effects of dosages of H_2O_2 on photosyntheticactivity of Microcystis aeruginosa

H_2O_2 浓度/mmol·L ⁻¹	Y	α	$P_{\rm m}$	$L_{\rm k}$
0	0.43	0.184	90. 7	493.1
0.1	0.42	0.184	35.4	191.7
0.3	0.36	0.157	28.2	180.4
0.5	0.30	0.133	19.6	147.1
1.0	0.25	0.113	11.3	100. 2
1.5	0.24	0.111	9.5	85.7
2.0	0.20	0.111	8.2	73.4

从表 2 可见,在H₂O₂投加量为 0.1 mmol/L下, 15 min 后其 Y 值为 0.42,相对空白样仅降低了 2.33%;而投加 0.3 mmo/L时,其 Y 值降低为 0.36, 相比空白样降低了 16.28%.因此,在实验条件下, 0.3 mmol/L的投加量下开始出现明显的灭活效果. 当投加量增大到 2.0 mmol/L时,其 Y 值则进一步降 低至 0.20. α 值及 P_m 的变化与 Y 值的变化趋势相 似. 但 α 值的变化相对 P_m 的变化较小.在H₂O₂投 加量为0~2 mmol/L下 ,α 值在 0.111~0.184 ,最大 变化率为 65.77%; 而 Pm 值在 8.2~90.7 之间, 最 大变化率达到 90.96%. L_k 的变化也呈现随 H_2O_2 的 投加量增大而显著下降.空白样值高达 493.1;而投 加量为 0.3 mmol/L时其 Lk 仅为 180.4. 将各个参数 与 H_2O_2 的投加量进行指数拟合,见表 3. 发现除了 Y 值的变化趋势符合指数函数外,其余参数呈指数衰 减的程度较小(R² 较小),而 UV 灭活时各个活性参 数均呈现较好的指数衰减,并且光合活性参数下降 迅速,见表4、表5.这是因为UV与H2O2的灭活机制 不同所致,UV 主要是通过破坏藻细胞的 DNA 并影 响其光合作用、藻细胞类囊体膜上存在2种光系统: 光系统 I (PSI) 和光系统 II (PSI). 现有研究 已经表明,紫外线辐射对 PSⅡ的影响更显著^[15,16]. 紫外线辐射会降解叶绿素,同时会使 PSⅡ的 D1 蛋 白被破坏 使其电子传递受阻 叶绿素吸收光而激发 的高能电子传不出去,积累的能量导致叶绿素的卟 啉环发生氧化-开环,光系统反应中心失活,PSⅡ的 电子传递效率降低^[17,18].而H₂O₂则主要是靠氧化作 用,当氧化剂投加到一定量时,传质过程成为反应的 控制阶段,因而此时再增加氧化剂的量反应效果并 未明显提高.

表 3 光合活性参数的拟合结果(H₂O₂工艺)

n 11 - 2	E	1			C 14.		111 0	,	
Table 3	Fitting of	photosynthetic	activity	parameters	ot Microcy	stis aeruginosa	(н,о,	process)

项目	Y	α	$P_{\rm m}$
拟合方程 ¹⁾	$Y = 0.4049 e^{-0.3762c}$	$\alpha = 0.171 \ 1 e^{-0.273c}$	$Pm = 44.91 e^{-1.0117c}$
相关系数 R ²	0. 929 6	0.8048	0. 798 9

1) 式中 *c* 为H₂O₂的浓度

表4 紫外线剂量对铜绿微囊藻光合活性的影响

Table 4 Effects of UV doses on photosynthetic activity

of Microcystis aeruginosa					
紫外线剂量/mJ•cm ⁻²	Y	α	$P_{\rm m}$	$L_{\rm k}$	
0	0.44	0.191	59	311.4	
45.9	0.37	0.159	56.1	424.4	
91.8	0.26	0.112	41.9	342.7	
137.7	0.20	0.107	25.3	275.1	
183.6	0.13	0.066	22	328	
275.4	0.06	0.028	11	253.4	
413.1	0.03	0.015	3.7	175.3	
550.8	0.02	0.012	0.6	39.2	

2.3 H₂O₂与 UV 工艺对藻液 UV₂₅₄的影响

2.3.1 H₂O₂工艺对藻液 UV₂₅₄的影响

为了保证较好的灭活效果,实验条件同 2.1.1 节中高浓度 H_2O_2 实验,结果见图 5. 从图 5 可以发现, H_2O_2 的投加量对藻液 UV₂₅₄的含量有显著影响, 在H₂O₂ 投加量为 0 mmol/L时,1 d 后其 UV₂₅₄ 为 0.09 增加了 9.76% *A* d 后其 UV₂₅₄ 为 0.107 ,增加 了 30.49%;而在H₂O₂投加量为 79.14 mmol/L时,1 d 后其 UV₂₅₄为 0.652,增加了 695% *A* d 后其 UV₂₅₄ 为 0.553,增加了 674%.对于未投加H₂O₂的藻液,其 UV₂₅₄随时间逐渐增加,这是由于藻液浓度增加所 致 将 UV₂₅₄与 D₆₈₀进行线性拟合,得到方程为:

$$UV_{254} = 0.059 \ 2D_{680} + 0.072 \ 7$$
$$(R^2 = 0.755 \ 1)$$

对于投加 H_2O_2 的藻液,其 UV_{254} 在第1d达到最 高值,且峰值与 H_2O_2 的投加量呈线性关系,线性拟 合方程为:

$$UV_{254} = 0.007 1 [H_2O_2] + 0.119 6$$

($R^2 = 0.983 9$)

之后随时间逐渐降低,但降低的幅度有限,这是

表5 光合活性参数的拟合结果(UV 工艺)

Table 5 Fitting of photosynthetic activity parameters of Microcystis aeruginosa (UV process)					
项目	Y	α	P_{m}		
	$Y = 0. \ 428 \ 1 e^{0.055 \ 4D}$	$\alpha = 0.1869 e^{-0.0509D}$	$P_{\rm m} = 82.531 \ 1 {\rm e}^{-0.075 \ 4 \ D}$		
相关系数 R ²	0. 976 7	0.9582	0. 973 7		

式中 D 为紫外线剂量

8期

因为H₂O₂对藻毒素等强紫外吸收物质的降解能力 较差.现有研究已经表明,单独H₂O₂对 MC-LR 基本 无降解,这是由于H₂O₂ 氧化能力(电极电位 1.77 V)不足以破坏 MC-LR 的化学键^[19].

2.3.2 UV 工艺对藻液 UV 254 的影响

实验中藻的 $D_{680} = 0.155$,藻密度为 35×10^8 个/L. 实验中考察了紫外线照射时间分别为 5、10、 30、60、120 及 180 min 对藻液 UV₂₅₄的影响,对应的 紫外线剂量分别为 45.9、91.8、275.4、550.8、 1 101.6及1 652.4 mJ·cm⁻².结果见图 6.结果表明, 照射时间低于 30 min 时,其 UV₂₅₄并无明显提高,照 射 30 min 时,4 d 后其 UV₂₅₄比空白样甚至低

15. 39%; 而照射 60 min 时,其 UV₂₅₄为 0. 17, 增大
30. 77%; 继续增大紫外线剂量, UV₂₅₄含量继续增大,照射 180 min 4 d 后, UV₂₅₄则增至 0. 222.

对比 UV 与H₂O₂工艺对藻液 UV₂₅₄的影响.可以 发现,UV 工艺对藻细胞的破坏程度较小,而H₂O₂在 达到较好的灭活效果时,对藻细胞的破坏程度很大.

3 结论

(1) H₂O₂对铜绿微囊藻有一定的灭活效果,在 H₂O₂投加量 <2 mmol/L条件时,随着H₂O₂的投加量 增加,对铜绿微囊藻的灭活效果不断提高,在H₂O₂ 投加量 >2 mmol/L条件下,增大H₂O₂的投加量对铜 绿微囊藻灭活效果提高较少.

(2) UV 工艺对铜绿微囊藻有较好的抑制生长 作用 91.8 mJ·cm⁻²的紫外剂量可对 35×10⁸ 个/L 浓度的藻产生7 d 以上的抑制作用,增大紫外线剂 量,灭活效果不断提高.

(3) H₂O₂对铜绿微囊藻光合活性的降低效率 不如 UV 工艺 UV 工艺时光合活性参数随紫外线剂 量的升高均呈明显的指数衰减.

(4) UV 工艺比H₂O₂工艺更有利于控制灭活藻 过程中藻液 UV₂₅₄的升高,因此,紫外线技术相对化 学氧化灭藻技术有较好的安全优势.

参考文献:

- [1] 贾瑞宝,周善东.城市供水藻类污染控制研究[M].济南: 山东大学出版社,2006.
- [2] La M A, Prepas E, Spink D, et al. Control of hepatotoxic phytoplankton blooms implication for human health [J]. Water Res, 1995 29(8):1845-1854.
- [3] Rodriguez E M, Acero J L, Spoof L, et al. Oxidation of MC-LR and-RR with chlorine and potassium permanganate: Toxicity of the reaction products [J]. Water Res, 2008, 42 (6): 1744– 1752.
- [4] Daly R I, Lionel H O, Brookes J D et al. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation [J]. Environ Sci Technol, 2007 A1(12):4447-4453.
- [5] 樊杰,陶涛,张顺,等.紫外线对给水除藻作用的研究[J].工 业用水与废水,2005,**36**(6):17-20.
- [6] Alam M Z B, Otaki M, Furumai H, et al. Direct and indirect inactivation of *Microcystis aeruginosa* by UV radiation [J]. Water

1805

Res 2001 35(4):1008-1014.

- [7] 樊杰 陶涛,张顺,等.紫外光预处理与预氯化强化除藻的作用比较[J].工业用水与废水,2005,36(5):24-26.
- [8] 景江,周明,汪星,等.H₂O₂与 UV-C 灭藻的协同效果研究及 工程实验[J].环境科学研究,2006,**J9**(6):59-63.
- [9] Linden K G , Shin G A , Sobsey M D. Relative efficacy of UV wavelengths 246 for the inactivation of *Cryptosporidium parvum* [J]. Wat Sci Technol , 2001 , 43 (12) :171-174.
- [10] Sommer R, Pribil W, Appelt S, et al. Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7nm) and ionizing (gamma) radiation: a comparative approach [J]. Water Res, 2001 35(13):3109-3116.
- [11] 韩博平,韩志国,付翔. 藻类光合作用机理与模型[M]. 北 京:科学出版社 2003. 57-78.
- [12] 韩志国,雷腊梅,韩博平.利用调制荧光仪在线监测叶绿素 荧光[J].生态科学,2005 24(3):246-249.
- [13] Watts R J, Kong S, Orr M P, et al. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater [J]. Water Res ,1995 29(1):95-100.

- [14] Mamane H, Shemer H, Linden K G. Inactivation of E. coli, B. subtilis spores, and MS-2, T-4, and T-7 phage using UV/H₂O₂ advanced oxidation [J]. J Hazard Mater 2007, 146(3):479-486.
- [15] Okada M, Kitajima M, Buder W L. Inhibition of photosystem I and photosystem II in chloroplasts by UV radiation [J]. Plant Cell Physiol, 1976, **17**:35-43.
- [16] Van T K, Corrad L A, West S H. Effect of 298nm radiation on photosynthetic reactions of leaf discs and chloroplast preparations of some crop species [J]. Environ Exp Bot, 1977, 17:107-112.
- [17] Vass I, Sass L, Spetea C, et al. UV-B induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components
 [J]. Biochemistry, 1996 35(27):8964-8973.
- [18] Chaturvedi R. Degradation and de novo synthesis of D1 protein and psbA transcript level in Chlamydomonas reinhardtii during UV-B inactivation of photosynthesis and its reactivation [J]. Bioscience, 2000 25(1):65-71.
- [19] 郭建伟,高乃云,殷娣娣,等.UV/H₂O₂工艺降解微囊藻毒素-LR[J].环境科学,2009,30(2):457-462.