高氮渗滤液短程生物脱氮反硝化动力学研究

王 燕 王淑莹^{*} 孙洪伟 彭永臻 张晶宇 甘冠雄 (北京工业大学北京市水质科学与水环境恢复工程重点实验室,北京 100124)

摘 要 采用 UA SB-SBR 组合工艺处理实际垃圾渗滤液,在获得稳定短程生物脱氮的前提下,通过批次实验,研究 SBR 系统内短程生物脱氮污泥的反硝化特性。本实验通过设定不同的 NO₂ 浓度和 _IH 梯度获得不同 FNA 浓度考察其对 反硝化菌的抑制影响。实验结果表明,恒定 _PH 下,以 NO₂ 作为电子受体时,比反硝化速率与初始 NO₂ 浓度符合 Andrews 抑制模型。 _PH = 7, 7.5和 8的 Andrews模型抑制系数 K_1 分别为 22.20, 22.71和 1 665.97 mg/I。 _PH 在 7~8时,随着 _PH 升 高, K_1 也在不断升高, FNA 对反硝化过程的抑制强度不断减弱。

关键词 垃圾渗滤液 NO5 反硝化 动力学 游离亚硝酸

中图分类号 X703.1 文献标识码 A 文章编号 1673-9108(2011)05-1081-05

Partial biological nitrogen removal of land fill leachate with high nitrogen concentration and kinetics of denitrification

W ang Y an W ang Shuying Sun H ongwei Peng Yongzhen Zhang Jingyu G an Guanxiong (K ey L aboratory of Beijing W ater Quality Science and W ater Environment Recovery Engineering Beijing University of Technology Beijing 100124, China)

Abstract On the basis of shortcut biological nitrogen removal from landfill bachate by using UASB-SBR system, kinetic of nitrite acting as electron acceptor on denitrification was investigated by batch tests. The inh bit to y effect of FNA on denitrification was studied with different concentrations of NO₂⁻ and pH. The result showed that specific denitrification rate correlated the original nitrite accord with Andrews's inhibition model under the constant pH. K_1 of Andrews's inhibition model were 22.20 mg/L, 22.71 mg/L, 1 665.97 mg/L when pH was 7, 7.5, 8, respectively. When pH was in the range of 7 to 8, K_1 was rising with the increase of pH, and the effect of FNA inhibition on denitrification bacame much weaker

Keywords landfill leach ate; nitrite; denitrification; kinetics; free nitrous acid

垃圾渗滤液是垃圾在填埋和堆放过程中由于垃 圾中有机物质分解产生的水和垃圾中的游离水、降 水以及入渗的地下水,通过淋溶作用形成的污 水^[1]。垃圾渗滤液具有成分复杂、水质水量变化 大、有机物和氨氮浓度高、微生物营养元素比例失调 等特点,其处理技术一直是国内外研究的难点和热 点。研究发现^[2-3],采用生物法对其进行处理既经济 又可达到排放标准。

传统生物脱氮包括硝化和反硝化 2个过程。硝 化是通过氨氧化菌 (AOB)将氨氮氧化为 NO₂⁻-N,进 而被亚硝酸盐氧化菌 (NOB)氧化为 NO₃⁻-N,反硝化 则通过反硝化菌将 NO₃⁻-N 逐步还原为 NO₂⁻-N, NO 和 N₂O,最终以 N₂形式排放。短程生物脱氮就是将 硝化过程控制亚硝化阶段,然后通过反硝化作用将 NO₂⁻-N还原成 N₂^[4]。它具有节省碳源、降低污泥 © 1994-2011 China Academic Journal Electronic P 产量等特点。下式为以 NO_2^{-} 为电子受体, 甲醇为碳 源的反硝化方程式^[5]:

 $0.67CH_3OH + NO_2 + 0.53H_2CO_3$

1. $23H_2O + 0.04C_5H_7O_2N + 0.48N_2 + HCO^-$ (1)

目前,以 NO² 作为电子受体的反硝化过程抑制 理论有 2种: (1) NO² 为反硝化过程的抑制剂。 NO² 在充当反硝化过程电子受体的同时对反硝化 还存在抑制作用,且对反硝化的抑制性受 _IH 影响, 造成了 NO² 对反硝化过程影响的复杂性。 (2)游 离亚硝酸 (FNA) 是反硝化过程的抑制剂^[6]。 Zhou 基金项目: 北京市自然科学基金重点项目 (8091001); 北京高校人才 强教计划高层次人才资助项目 (HR 20090502)

作者简介: 王燕 (1986~), 女, 硕士研究生, 主要从事高氨氮垃圾渗 滤液的生物处理技术研究与应用工作。

E-mail wangyan_2008@ emails bjut edu cn

© 1994-2011 China Academic Journal Electronic Publi遍訊联系以空mailwis@htsur@arwed. http://www.cnki.net

等^[6]提出了是 FNA 而不是 NO_2^- 为反硝化过程的抑制剂。 Prak asam 等^[7]认为, NOB 活性受 FNA 抑制的临界浓度是 0.07 mg/L。Vad ive h 等^[8]研究表明, 当 FNA 浓度分别高于 0.011 mg HNO₂-N /L 和 0.023 mg HNO₂-N /L, NOB 活性被部分抑制和完全 抑制, 而当 FNA 浓度为 0.4 mg HNO₂-N /L 时 AOB 生长才受到完全抑制。FNA 可按下式计算^[9]:

$$[FNA] = \frac{[NO_2^2 - N]}{\exp(-\frac{2300}{273 + T}) \times 10^{H}}$$
(2)

从式中可以看出,当温度一定时,NO₂和_PH之 一改变就会使 FNA 发生改变。本实验通过 NO₂和 pH 联合控制来研究 FNA 对反硝化过程的抑制影 响。目前,关于垃圾渗滤液动力学方面的研究报道 较少,具体详见文献 [10-13]。

基于上述研究背景,本实验以实际垃圾渗滤液为研究对象,在 UASB-SBR 组合工艺中实现短程硝化反硝化,并在此基础上,通过大量小试研究不同 H下 NO2 作为反硝化过程电子受体的反硝化特征,进而得出 FNA 浓度与抑制系数的关系。

1 材料与方法

1.1 渗滤液水质

本实验所用垃圾渗滤液取自北京六里屯垃圾填 埋场,呈深黑色、粘稠、有恶臭,其水质为_IH 7.1~ 8.5, COD 3 000~ 5 000 mg/L, TN 1 500~ 2 600 mg/ L, NH⁴₄-N 1 000~ 2 400 mg/L, NO³₃-N 2.6~ 9.6 mg/L, NO²₂-N 1~ 2.6 mg/L, TS 15 800 mg/L, 色度 500~ 750,深褐色, 臭味 4级。

1.2 实验装置

采用 UASB-SBR 组合工艺处理垃圾渗滤液,该 系统由原水箱、UASR 中间水箱和 SBR 顺序连接组 成,实验装置如图 1所示。

原水箱由不锈钢制成,外裹敷保温材料,容积为 50 L。水浴加热区直径为 150 mm,容积为 10 L。主 体反应器 UASB 和 SBR 由有机玻璃制成,其中 UASB有效容积为 3 L, SBR 有效容积为 9 L。由于 UASB采用连续进水方式,而 SBR 为间歇进水,因此 在两者之间设容积为 25 L的中间水箱。UASB反应 器内温度由温控装置控制 30 ±2 ℃, SBR 在室温下 运行。

1.3 接种污泥

图 1 UASB-SBR 生化系统流程图 Fig 1 Flow digram of UASB-SBR biological system

污水处理厂, SBR 接种的活性污泥取自本实验室其 他课题组处理生活污水的活性污泥反应器。

1.4 分析方法

样品中 NH⁴₄ -N、NO³₃ -N、NO²₂ -N 和 COD 的测定 采用标准方法^[14]。 TN 通过 TN /TOC 分析仪 (Mu hi N /C3000)测定。采用 WTW 测定仪 (pH /Oxi 340 i) 及相应探针监测 pH,通过滴加 0.05 mol/L NaOH 或 HC l使 pH 控制在精确的范围内。

1.5 实验方案

以 N aNO₂ 浓度是 60 mg/L为例:在 SBR反应器 实现稳定短程硝化反硝化的前提下,取 3 L具有良 好短程脱氮特性的污泥,分别装入 3个小试瓶中进 行反硝化批次实验。依次在每个瓶中加入 3 mL N aNO₂ 溶液和足量的甲醇,保证每个反应器内 NO₂ 浓度均为 60 mg/L且碳源充足 (为不使碳源成为反 硝化过程限制因素, C/N 控制在 5~6), $T = 22 \degree$ 采用 3个 $_{\rm PH}$ 梯度进行反硝化实验即控制 $_{\rm PH}$ 分别 在 7 ±0.02, 7.5 ±0.02和 8 ±0.02。调节不同 NO₂ 浓度进行反硝化批次实验,实验参数如表 1所示。

2 结果与分析

 SBR 中有机物及氮去除特性 亚硝态氮积累率 (NAR)的计算公式为:

 $NAR = \frac{\rho(NO_2^- - N)_{\vec{u} \mid t \leq R}}{\rho(NO_2^- - N)_{\vec{u} \mid t \leq R}} \times 100\% (3)$

本实验 SBR 中短程生物脱氮的实现和维持共 经历了 110个周期。图 2为短程硝化稳定阶段 SBR

UASB反应器接种的厌氧颗粒污泥取自某啤酒。内一个周期三氯和COD的变化规律图。如图2所 ◎ 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.ne

表 1 实验参数 Table 1 experimental parameters ______ 甲醇量 (mL) 反应器编号 рН C: N T(°C) $NaNO_2 \equiv (mL)$ NaNO,浓度(mg/L) 7.0 5:1 22 0. 25/1/3/4/5/7 5/20/60/80/100/140 01~1 ₩ 5:1 2# 7.5 22 0 1~1 0. 25/0 5/1/3/5/7 5/10/20/60/100/140 ¥ 8 0 5:1 22 2 /3 /5 / 6 / 8 / 13 / 25 / 50 40 /60 / 100 / 120 / 160 / 260 / 500 / 1000 0 3~6

示, SBR系统初始 COD 浓度为 722 mg/L并随着反应的进行逐渐降低, 硝化结束时 COD为 428 mg/L, 这部分 COD 难于生物降解, 不适合作反硝化碳源, 因此投加一定量的甲醇, 这也是反硝化初始时 COD 增加的原因。在降解有机物的同时, NH⁴-N 不断地 被转化为亚硝态氮和硝态氮, 浓度由初始 127.96 mg/L降为 3.17 mg/L, 此时硝酸盐浓度为 3.62 mg/ I, 而亚硝酸盐浓度高达 121.03 mg/L, 由公式(3)可 知, NO²-N 的积累率为 97.09%, 而本周期 FA 的变 化范围为 0.118~17.79 mg/L。由此可见, 反应器 中 NOB的活性受到 FA 抑制, SBR 已稳定维持短程 生物脱氮。

Fig 2 Variations of COD, NH_4^+ -N, NO_2^- -N, NO_3^- -N in SBR

22 不同 pH 下初始 NO₂ 浓度对反硝化过程的 影响

 $_{\rm H}$ = 7时,初始 NO² 浓度为 5 mg/L,通过线性 关系得出其比反硝化速率为 3.37 mg/(g•h)。采 用上述方法可求出 $_{\rm H}$ 在 7.7 5和 8下的比反硝化 速率与初始 NO² 浓度的变化关系,如图 3所示。由 图 3可知, pH = 8 时的比反硝化速率近似符合 M onod方程^[15]。即随着 NO² 浓度的增加,比反硝 化速率也在升高,当 NO² 浓度增加到一定程度时, 比反硝化速率趋于不变。M onod方程公式为:

$$v = v_{\rm max} \frac{S}{K_{\rm s} + S} \tag{4}$$

式中, v为比速率 (mg/(g• h)); v_{max}为最大比速率 (mg/(g• h)); S为基质浓度 (mg/L); K_s为半饱和 常数 (mg/L)。

v

图 3 不同 pH 下比反硝化速率与初始 NO_2^- 的关系

Fig 3 Relation between specific denitrification rate and in itial n itrite under different pH

 $_{\rm PH} < 8时, 比反硝化速率在 NO₂ 浓度较低时近$ 似符合 M onod方程, 在浓度较高的环境下, 比反硝化速率随 NO₂ 浓度的升高而降低, 这一特征说明在 $较低 <math>_{\rm PH}$ 下 M onod 方程已不足以描述这种情形, 可 采用 And rev s¹⁶ 方程拟合。其公式如下:

$$v = v_{\max} \frac{S}{K_s + S + S^2 K_1}$$
(5)

式中, v为比速率 (mg/(g•h)); v_{max}为最大比速率 (mg/(g•h)); S为基质浓度 (mg/L); K_s为半饱和 常数 (mg/L); K₁为 Andrews模型抑制系数 (mg/L)。

对比公式 (4)和 (5)可知, 两者的主要差别在于 抑制系数 K_{1} , 当 K_{1} 无限大时, Andrews方程就近似 为 Monod方程。因此 2个方程中参数的意义是一 样的^[17]。

3 讨 论

3.1 pH为 7时反硝化反应动力学 反硝化过程的 Andrews方程公式为:

$$v_{\rm N} = v_{\rm Nmax} \frac{S_{\rm N}}{K + S + S^2 - K} \tag{6}$$

© 1994-2011 China Academic Journal Electronic Publishing House. All rightsnetselved. Matth://www.cnki.net

式中, v_N 为比反硝化速率 (mg/(g• h)); v_{Nmax}为 最大比反硝化速率 (mg/(g• h)); S_N 为 NO₂⁻浓度 (mg/L); K_{SN}为反硝化半饱和常数 (mg/L); K_N为反 硝化抑制系数 (mg/L)。

采用 m atlab 对 $_{\rm H}$ = 7的比反硝化速率按照 Andrew s模型拟合,实验结果发现,在 $_{\rm P}$ H = 7时,反硝 化过程比反硝化速率与初始 NO₂ 的浓度符合 Andrew s模型,如图 4所示。 $_{\rm P}$ H = 7时 Andrew s模型的 参数,反硝化半饱和常数 $K_{\rm SN}$ = 12.44 mg/L,最大比 反硝化速率 $v_{\rm Mmax}$ = 12.67 mg/(g• h),抑制系数 $K_{\rm N}$ = 20.20 mg/L。则 $_{\rm P}$ H = 7时的 Andrew s方程为:

3 2 pH 为 7.5 时反硝化反应动力学

实验结果发现,在 pH = 7.5时,反硝化过程比 反硝化速率与初始 NO_2 的浓度符合 Andrew s模型, 如图 5所示。 pH = 7.5时 Andrew s模型的参数,反 硝化半饱和常数 $K_{SN} = 2.77 mg/L$ 最大比反硝化速

率 $v_{Nmax} = 20.24 \text{ mg/(g \cdot h)}, 抑制系数 K_{\mathbb{N}} = 22.71 \text{ mg/L}, 则 pH = 7.5时 Andrews方程为:}$

$$v_{\rm N} = 20.\ 24 \frac{S_{\rm N}}{2\ 77 + S_{\rm N} + S_{\rm N}^2 / 22\ 71}$$
 (8)

3 3 pH为 8时反硝化反应动力学 反硝化过程的 M oned方程公式为:

$$v_{\rm N} = v_{\rm Nmax} \frac{S_{\rm N}}{K_{\rm SN} + S_{\rm N}} \tag{9}$$

采用双倒数作图法 (lineweaver-burk pbt)将公式 (9) 变形为:

$$\frac{1}{v_{\rm N}} = \frac{K_{\rm SN}}{v_{\rm Nmax}} \times \frac{1}{S_{\rm N}} + \frac{1}{v_{\rm Nmax}}$$
(10)

由公式 (10)可知, v_{Nmax} , K_{SN} 为常数, $1/v_N$ 、 $1/S_N$ 呈线性关系, 直线的截距为 $1/v_{Nmax}$, 斜率为 K_{SN} / v_{Nmax} , 由此可求出 v_{Nmax} , K_{SN} 。除此之外, 还可采用 matlab对 pH = 8实验数据进行 Monod方程拟合, 如 图 6所示。 pH = 8时 Monod方程的近似参数、反硝 化半饱和常数 K_{SN} = 232.56 mg/L, 最大比反硝化速 率 v_{Nmax} = 79.97 mg/(g* h)。 pH = 8时的 Monod方 程为:

$$v_{\rm N} = 79 \ 97 \frac{S_{\rm N}}{232 \ 56+ S_{\rm N}} \tag{11}$$

3.4 FNA 浓度与抑制系数 K_I的关系

初始 NO₂ 浓度一定,不同 _H 条件下, FNA 对 反硝化过程的抑制作用也不同,且抑制强度随 _{pH} 的变化有较大差异。由公式(2)可知, _HH 在 7~ 8 且 NO₂ 浓度一定时, FNA 的含量随着 _{pH} 升高而降 低,以加入的 N aNO₂ 浓度为 100 mg/L 为例, FNA 浓 度由 _{pH} = 7时的 0.025 mg HNO₂-N /L 降为 _{pH} = 8 时的 0.0025 mg HNO₂-N /L,即 FNA 对反硝化过程 的抑制强度逐渐减弱,而 K_1 值却在不断升高,由 22.20 mg/L 上升到 1 665.97 mg/L。Andrews模型 中的抑制系数 K_1 反映了不同条件下抑制剂的抑制 强度, K_1 越低抑制强度越高。进一步说明,随着 pH 值升高, FNA 对反硝化过程的抑制强度不断减弱。

4 结 论

(1) 恒定 pH下, 以 NO_2^- 作为反硝化电子受体时, 比反硝化速率与初始 NO_2^- 浓度符合 And rew s抑 制模型。

(2) Andrews模型参数, pH = 7, 7. 5和 8时的反 硝化半饱和常数 K_{SN}为 12. 44, 2. 77和 232. 56 mg/

L.最大比反硝化速率 视max分别为 12.67 mg/(g• © 1994-2011 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

图 6 pH = 8比反硝化速率与初始 NO₂⁻ 的关系 Fig 6 Relation between specific denitrification rate and initial nitrite under pH = 8

h), 20. $24 \text{ mg}/(g \cdot h)$ 79. 97 mg/(g \cdot h).

(3) pH = 7, 7.5和 8的 Andrew s模型抑制系数 K₁分别为 22 20, 22, 71和 1 665.97 mg/L。不难发现, pH 在 7~8且 NO₂ 浓度一定时,随着 pH 值升高, K₁值也在不断升高, FNA 对反硝化过程的抑制强度不断减弱。

参 考 文 献

- [1] 王宝贞, 王琳. 城市固体废弃物渗滤液处理与处置. 北 京: 化学工业出版社, 2005. 1-47
- [2] Shiskowski D. M., Mavinic D. S. Biological treatment of a high ammonia leachate Influence of external carbon during initial startup Water Res, 1998, 32(8): 2533-2541
- [3] Martienssen M., Schöps R. Biological treatment of leachate from solid waste landfill sites-alterations in the bacterial community during the denitrification process. Water Res, 1997, 31(5): 1164-1170
- [4] 孙洪伟,彭永臻,时晓宁,等. 高氮渗滤液缺氧 厌氧 UASB-SBR工艺低温深度脱氮.中国环境科学,2009,29(2):207-212
- [5] 王建龙, 文湘华. 现代环境生物技术. 北京: 清华大学 出版社, **2000** 237

- [6] Zhou Y., Pijuan M., Yuan Z. G. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrfication by poly-phosphate accumulating organisms Biotechnology and Bioengineering 2007, 98(4): 903-912
- [7] Prakasam T. B S., Loehr R. C. M icrobial nitrification and denitrification in concentrated wastes Water Res, 1972, 6(7): 859-869
- [8] Vadivelu V. M., Yuan Z. G., Fux C., et al. The inhibitory effects of free n itrous acid on the energy generation and growth processes of an enriched nitrobactor culture. Envinon Sci Technol, 2006, 40(14): 4442-4448
- [9] Anthonisen A. C., Loehr R. C., Prakasam T. B. S., et al. Inhibition of nitrification by ammonia and nitrous acid Journal of Water Pollution Control Federation, 1976, 48 (5): 835-852
- [10] Katarzyna K., Ledakow icz S. Kinetics of nitrogen removal from sanitary landfill leachate Bioprocess Biosyst Eng, 2006, 29(5-6): 291-304
- [11] Zum ftW. G. Cellbibbgy and molecular basis of denitrification Microbiol Mol Biol Rev., 1997, 61(4): 533– 616
- [12] GujerW., HenzeM., Mino T., et al. Activated shdge modelno 3. Water Sci Technol, 1999, 39(1): 183– 193
- [13] Coeho M. A. Z, Russo C, Arau jo O. Q. F. Optim ization of a sequencing batch reactor for biological nitrogen removal Water Res, 2000, 34(10): 2809–2817
- [14] 国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社, 2002 200-281
- [15] Monod J. The growth of bacterial cultures. Annual Review of Microbio bgy, 1949, 3: 371-394
- [16] Andrews J E A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates Biotechnology and Bioengineering 1968, 10(6): 707– 723
- [17]候红勋,彭永臻,殷芳芳,等.NO⁻² 作为电子受体对 反硝化吸磷影响动力学研究.环境科学,2008,29 (7):1874-1879