

磁加载絮凝技术在清河污水处理厂应急工程中的应用

张雅玲 韵 赵志军 方先金 张 李振川

(北京市市政工程设计研究总院,北京 100082)

摘要 对磁加载絮凝技术进行中试, 结果表明, 该技术对 SS 和 TP 的去除效果非常好, 去除率 均可以达到 90% 以上: 对 BOD5、CODa的去除率均可以达到 60%: 对 TN、NH3- N 的去除效果不明 显,去除率仅为10%左右。为缓解清河污水处理厂的运行压力,并保证奥运期间污水处理设施的正 常运行,建成规模5万 m3/d 的磁加载絮凝应急工程。介绍了工程的设计和运行情况,实际运行效果 满足工程建设的要求。

关键词 磁加载絮凝技术 污水处理厂 应急工程 一级强化处理

1 工程概况

清河污水处理厂一期、二期工程设计污水处理 规模共 40 万 m³/ d, 二级出水部分进行后续深度处 理, 其余排入清河。再生水处理规模 8 万 m³/d, 主 要向海淀区和朝阳区部分区域提供城市杂用水、河湖 补给水及奥林匹克森林公园水系补水。2008年清河 污水处理厂实际处理污水量已达到47万 m³/d. 汛期 超过 50 万 m³/d,实际进水水质也超出了原设计值、 污水处理厂长期处于超负荷运行状态。

为了减轻清河污水处理厂二级处理系统的运行 压力, 为再生水处理厂提供稳定的水源, 保证再生水 水质. 特别是奥林匹克森林公园及其周边地区的水环 境,2007年经过方案比选,应急工程选用了磁加载絮 凝技术, 确定处理规模为 5 万 m³/d。2007 年 8~9月 在清河污水处理厂对该技术进行了生产试验,参考试 验结果, 于 2008 年设计并建成了规模为 5 万 m^3 / d 的 磁加载絮凝应急工程污水处理设施。该设施在奥运会 期间运行良好, 极大地缓解了清河污水处理厂的运行 压力,至今已经投产近两年。

2 磁加载絮凝技术试验分析与结果

2.1 试验装置

磁加载絮凝试验装置安装在一辆可移动的试验 车上, 试验车外形尺寸 7.8 m×3 m×4.2 m, 见图 1。该试验装置的处理规模为1万 m^3/d 。

2.2 工艺流程

磁加载絮凝试验工艺流程见图 2。试验进水 为清河污水处理厂曝气沉砂池出水,原水经提升

图1 车载式磁加载絮凝试验装置

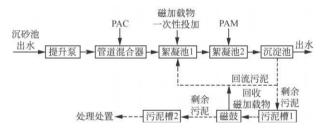


图 2 磁加载絮凝试验工艺流程

泵提升到试验系统,首先在管道混合器内加入混 凝剂 PAC(聚氯化铝); 然后在絮凝池 1 内投加磁 加载物,磁加载物在絮凝过程中作为凝核起到了 强化絮凝的作用, 使絮体颗粒既大又密实: 接着在 絮凝池 2 内投加助凝剂 PAM(聚丙烯酰胺) , 使絮 体颗粒进一步长大: 最后, 在沉淀池中磁加载物携 带着絮体一起沉淀下来。由于絮体颗粒密度大、 沉降速度快,系统采用的沉淀池面积仅为常规的 1/15 左右。沉淀污泥一部分回流到絮凝池,以增 加絮凝池中的污泥浓度,提高絮凝效果:一部分通 过磁鼓将磁加载物从污泥中分离出来, 回收的磁

加载物回到絮凝池循环利用,污泥进行无害化处理后妥善处置。

2.3 试验工况

试验过程中,磁加载物一次性加入,通过磁鼓分离后循环利用,损失量非常少,试验期间无需补充。混凝剂加药量不断调整,助凝剂加药量不变,药剂均配置成一定浓度的药液后用加药泵投加,通过调节加药泵的流量来改变投药量。试验进水量采用电磁流量计计量。根据试验进水量和加药量的变化,共进行了6个工况的试验,见表1。

表1 试验工况分析

试验条件	工况 1	工况 2	工况 3	工况 4	工况 5	工况 6
进水量/ m³/ h	240	240	240	380	380	380
PAC 投加量(以 Al ₂ O ₃ 计,下同)/mg/L	54	42	33	33	18	9
PAM 投加量/mg/L	2	2	2	2	2	2

2.4 试验结果与分析

2.4.1 试验进、出水水质

6个试验工况的进、出水水质及各项污染物指标的去除率见表 2。从表 2 可以看出,进水量相同时,增大投药量可以提高各项污染物指标的处理效果;投药量不变的情况下,进水量增大,各项污染物指标的处理效果均有所降低。投药量、进水量均相同时,不同污染物指标的处理效果明显不同,按去除率排序, TP、SS 的处理效果最佳,去除率可以达到 90% 以上; 其次是 BOD_5 、 COD_G , 去除率可以达到 60% 以上; 氮的处理效果不太显著, TN、 NH_3 – N 的去除率均低于 20% 。根据试验结果分析,磁加载絮凝技术可以使原污水达到一级强化处理的程度。

2.4.2 试验系统排泥

试验过程中排泥量、污泥浓度及污泥比阻的测定结果见表 3。

从表 3 可以看出, 试验排泥量为试验进水量的 5%~ 8%, 进水量越大、投药量越高, 排泥量也越大。 试验过程中, 污泥浓度和污泥比阻的变化不很大, 根据污泥比阻判断该污泥比较易于机械脱水, 但是由于污泥浓度很低, 脱水之前应先进行浓缩。

- 3 清河污水处理厂应急工程案例分析
- 3.1 设计进、出水水质

表 2 试验进、出水水质与去除率

 指标	试验	各工况下试验出水							
担心	进水	1	2	3	4	5	6		
T P/ m g/ L	7. 6	0. 15	0.18	0. 24	0. 37	1. 2	2. 3		
		(98)	(98)	(97)	(95)	(84)	(70)		
SS/mg/L	309	14	20	28	36	48	65		
		(95)	(94)	(91)	(88)	(84)	(79)		
$BOD_5/mg/L$	296	72	78	79	97	102	113		
		(76)	(74)	(73)	(67)	(66)	(62)		
COD_{Cr} / mg/ L	494	130	138	141	165	202	238		
		(74)	(72)	(71)	(67)	(59)	(52)		
T N/ mg/ L	62	50	52	54	57	58	61		
	02	(19)	(16)	(13)	(8)	(6)	(2)		
NH_3 - $N/mg/L$	49	43	44	46					
		(12)	(10)	(6)					

注:括号内为去除率,%。

表 3 排泥量、污泥浓度及污泥比阻测定结果

试验工况	排泥量/ m³/ h	污泥浓度/ mg/ L	污泥比阻/m/kg
工况 1	19	3 320	4. 3× 10 ¹²
工况 2	19	3 014	4. 2× 10 ¹²
工况 3	18	3 017	3.4×10^{12}
工况 4	25	4 740	4. 1× 10 ¹²
工况 5	22	3 459	4. 0× 10 ¹²
工况 6	19	3 400	4. 7× 10 ¹²

由于本工程为应急工程,主要作用是降低污染物排放量,所以不要求设计出水水质执行《城镇污水处理厂污染物排放标准》(GB 18918—2002),仅规定出水水质需达到表 4 的要求。

表 4 应急工程设计进、出水水质

项目	BOD ₅ /mg/L		COD _{Cr} / mg/L		SS/mg/L		TP/ mg/L	
进水	€300	> 300	€550	> 550	€380	> 380	≤ 8	> 8
出水	≤150	去除率 ≥50%	≤170	去除率 ≥60%	≤20	去除率	≤1	去除率 ≥90%

根据清河污水处理厂试验结果分析,磁加载絮凝技术可以满足表 4 规定的出水要求。同时由于该技术工艺流程简洁,受原水水质影响小,抗冲击负荷能力强,设备体积小,占地面积小,工程建设期短,投产快,适合于清河污水处理厂应急工程采用。

3.2 工艺设计

由于清河污水处理厂应急工程建于现有污水处理厂内,必须尽可能减少总占地面积,减小对已建工程的影响;再加上要求在奥运会开幕之前运转起来,所以必须充分考虑工程的可实施性。因此,工程设计过程中磁加载絮凝处理系统采用设备化装置,装置的规模大小结合,设置 2 万 m³/d、5 000 m³/d 的

处理系统各 2 套。其他配套设施的设计如下。

在清河污水处理厂现有曝气沉砂池前新建1座 溢流井, 将超负荷污水溢流至 1 根 DN 1 200 管道, 然后接入应急工程。进水格栅、提升泵房及出水井 合建,格栅渠道为1条,渠道内安装1台网板式细格 栅机, 孔径 3 mm, 清除的栅渣经无轴螺旋输送机输 送至栅渣压榨机,压榨后落入栅渣斗(车)内。提升 泵房内安装 4 台潜水混流泵, 为方便潜水泵维修, 泵 房设起吊装置: 为防止倒灌, 在水泵出水管末端安装 拍门。出水井内设置出水堰、对污水流量进行调配。 出水管采用 DN 900 钢管接入磁加载絮凝水处理装 置的配水井。

磁加载絮凝水处理装置的配水井为钢制同心圆 结构,负责向4套磁加载絮凝水处理装置配水。磁 加载絮凝水处理装置安装在一个设备间内,占地面 积约 1 100 m²。加药间与配电及控制室合建,加药 间旁设液态 PAC 储药池, 加药间内设混凝剂、助凝 剂投加泵各2台(1用1备)。混凝剂 PAC 配置成 浓度 10% 的药液进行投加, 助凝剂 PAM 配置成浓 度0.2%的药液进行投加。加药间内设PAC、PAM 配药装置。

磁加载絮凝处理系统的剩余污泥通过污泥泵提 升到储泥池、储泥池内设潜水搅拌器。储泥池内污泥 经污泥螺杆泵加压后进入带式浓缩脱水机内进行浓 缩脱水, 然后由无轴螺旋输送机输送到污泥堆置棚装 车外运。污泥处理系统主要建(构)筑物包括:储泥池、 污泥浓缩脱水机房、污泥堆置棚、药库、配电及控制室。

3.3 运行管理与运行效果

磁加载絮凝应急处理设施在运行前应先取原水 水样进行烧杯试验,确定 PAC、PAM 及磁加载物的 投加量。运行过程中,通过观察絮凝池中矾花的状 况可初步判断加药量是否合适、加药系统是否运行 正常。通常情况下, 矾花为大颗粒的黑褐色絮体为 正常。反之, 若絮体少, 可能为 PAC 投加量不足: 絮 体细小,可能为 PAM 投加量不足: 絮体颜色浅灰, 可能为磁加载物回收率低。当沉淀池出水有细小絮 体流出时,检查是否 PAC、PAM 投加量偏少、磁加 载物回流量不足、磁加载物回收通道堵塞等。如果 沉淀池出水夹杂大量含磁加载物的絮体则应尽快关 闭系统,查找原因。

2008年8~10月期间,清河污水处理厂磁加载 絮凝应急处理设施的月平均进、出水水质及各项污 染物指标的去除率见表 5。从表 5 可以看出. 该工 程的实际运行效果满足工程建设的要求。

表 5 磁加载絮凝应急处理设施实际运行效果

	8月			9月			10月		
项目	进水	出水	去除 率/%	进水	出水	去除 率/%	进水	出水	去除 率/%
TP/ mg/ L	4. 1	0.8	80	4. 2	0.6	86	5.3	0.4	92
SS/ mg/ L	176	20	89	154	19	88	180	20	89
$\mathrm{BOD}_5/\mathrm{mg}/\mathrm{L}$	137	52	62	139	56	60	165	53	68
$COD_{Cr}/mg/L$	294	94	68	293	105	64	366	127	65

4 结语

清河污水处理厂磁加载絮凝应急工程的建设, 减轻了清河污水处理厂二级处理系统的运行压力. 提高了二级处理效果, 为后续再生水处理厂提供了 稳定的水源、保证了再生水水质。 由于二级出水排 入清河, 再生水补给奥林匹克森林公园水系, 所以应 急工程运行后不但改善了清河的水环境, 也保证了 奥林匹克森林公园水系的水质稳定,为2008年奥运 会的成功举办创造了良好的环境,实现了申奥承诺, 具有可观的社会和经济效益。

& 通讯处: 100082 北京市西直门北大街 32 号 3 号楼

E-mail: zyl@ bmedi. cn 收稿日期: 2010 - 01 - 25 修回日期: 2010 - 04 - 27

江苏新沂加强骆马湖湿地保护

近年来, 江苏省新沂市不断加大对湿地与野生动 植物的保护力度。新沂市湿地和野生动植物的资源 丰富,物种多样,尤其是在骆马湖湿地区域更是如此, 这里动物资源达300多种,植物资源达200多种。为 切实加强骆马湖资源保护, 合理开发利用湿地资源, 经专家实地考察后制定了《江苏骆马湖湿地 公园总体 规划》,范围涉及窑湾镇及草桥镇行政区划内的骆马湖 湖面, 面积约 51.71 km², 其中湿地面积 40 km², 占总 面积的 80%。此外, 新沂市还先后沿湖岸建立了 7 个 野外固定监测点, 7 名兼职监测员常年驻守监测, 配置 了必要的监测设备。此外还坚持定期巡查及疫源疫病 监测信息日报制度和零报告制度, 保证 24 h 交通通讯 畅诵。