文章编号:0254-0096 (2002) 02-0252-05

有机废水发酵法生物制氢中试研究

李建政,任南琪,林 明,王 勇

(哈尔滨工业大学市政环境工程学院,哈尔滨 150090)

摘 要:利用厌氧细菌的产酸发酵作用进行生物制氢的生物制氢技术,在世界范围内受到普遍重视。然而,多数研究都集中在纯菌种的产氢机理上,而对混合菌种的研究较少。该文在小试研究成果的基础上,利用驯化的 厌氧活性污泥进行了中试规模的生物制氢试验研究,获得了 30mol/kgVSS.d 的持续产氢能力。试验结果表明, 将运行参数控制在温度 35、pH4.0~4.5、HRT4~6h、ORP-100~-125mV、进水碱度 300~500mg/L(以 CaCO3 计)、容积负荷 35~55kgCOD/m³ d 等范围时,发酵法生物制氢反应器的最大持续产氢能力可达 5.7m³/ m³ d。中试制氢反应器具有良好的抗负荷冲击能力和运行稳定性,对制糖废水中的 *COD* 去除率可达到 20%以 上,去除单位 *COD* 可获得 26mol/kg *COD* 的产氢率。

关键词:活性污泥;厌氧;产酸发酵;制氢;中试 中图分类号:TK6 **文献标识码**:A

0 引 言

氢气作为一种理想的可替代传统化石能源的新 型能源物质,已得到世界的公认,相关的资源开发 和应用技术研究已取得了许多成果^[1]。利用光及 细菌和厌氧发酵微生物对生物质及水的分解作用来 生产氢气,不仅可节省能源,同时也不会对环境造 成危害,是一种新型的能源清洁生产技术。其中, 利用厌氧微生物的产酸发酵过程进行氢气生产的生 物技术,受到了人们的充分重视^[2~7]。然而,目 前的国内外研究,无论是采用纯菌种还是驯化的活 性污泥,还都停留在实验室小试研究阶段,试验数 据也是短期运行的结果,距工业化生产的要求还相 去甚远。

利用驯化的厌氧活性污泥进行生物制氢,可避 免利用纯菌种所必须的纯菌分离、扩大培养、接种 及固定化等一系列配套技术和设备,在大幅度降低 生物制氢成本的同时,也使生产工艺变得简单和易 于操作。为了探索利用混合菌种——驯化的厌氧活 性污泥进行工业化生物制氢的可行性,本文在小试 研究的基础上^[8],进行了中试规模的有机废水发 酵生物制氢技术研究。

1 工艺流程及试验方法

有机废水发酵法生物制氢中试研究所采用的工艺 流程如图 1 所示,其中生物制氢反应器属连续流搅拌 槽式反应器,由小试研制的高效发酵产氢反应器(国 家专利:9211474.1)按照单位混合液体积功率消耗 相似 原则 放 大 而 成^[9],总 容 积 2m³,有 效 容 积 1.48m³,搅拌功率 1.5kW,搅拌速率为 60r/ min。

中试研究所采用的种泥,是取自生活污水排放 沟的底泥,经淘洗过滤后接种于中试反应器中,污 泥驯化工作同时开始。中试所采用的有机废水,是 由哈乐滨和平糖厂的废糖蜜经水稀释并投加一定量 的 N、P 营养物质配制而成。污泥驯化开始时,采 用小试研究所得到的最佳工艺控制参数^[8,10],对 中试制氢反应器进行控制运行。小试研究证明,发 酵生物制氢反应器的最佳运行状态总是伴随乙醇型 发酵的发生而出现,因此,乙醇型发酵的发生与维 持,是发酵生物制氢反应器运行状态良好的证明。

中试系统启动 40d 后,反应器开始有大量发酵 气体产生(约 60L/d),液相末端产物中的乙醇和 乙酸含量达到 60 %以上,废水发酵实现了乙醇型, 污泥驯化基本完成,试验转入正式运行阶段。在正 式运行期间,乙醇和乙酸在液相末端产物中维持在

收稿日期: 2001-01-03

7

基金项目:国家重点基础研究资助项目 (G2000026402)

图 1 有机废水发酵法生物制氢中试研究工艺流程示意图

Fig. 1 Schematic diagram of the experimental set up

表1 中试运行各阶段的 COD 去除率、酸化率和液相产物组成

```
W:发酵末端产物总量
```

Table 1 Changes of COD removal, VFAs and the acidogenic ratio against operating time

U: 未检出

	<i>HR T/</i> h	进水	COD 去除率		1 酸化率/%	液相产物中各组分百分比/%				
运行时间/ d		$COD/ \text{mg L}^{-1}$	/ %	W/ mg L		乙醇	乙酸	丙酸	丁酸	戊酸
40	10.57	4040	22.4	1266	31.3	6.78	53.70	1.03	33.00	5.48
70	10.57	2554	37.9	624	24.4	2.58	71.05	U	24.51	1.86
90	10.57	1846	31.3	421	22.8	1.70	88.93	0.52	8.86	U
120 <	10.57	5052	28.1	1452	28.7	60.00	34.96	0.15	4.88	U
150	5.92	4184	20.8	1728	41.3	34.26	18.37	9.15	16.32	21.90
180	4.11	4124	22.3	2103	51.0	32.60	59.87	3.81	3.73	U

2 结果及分析

2.1 有机负荷与产氢速率

中试研究中,在控制适宜的温度,pH值、氧 化还原电位 (ORP) 及搅拌器搅拌速率等条件下 (见 2.2),对发酵生物制氢反应器的最适有机负荷 范围及最大产氢能力进行了研究。

Fig. 2 Influence of organic loading rate on hydrogen yield

从有机负荷对产氢速率的影响(图 2)来看, 在较低负荷条件下,生物制氢反应器的产气速率随 容积负荷的增加而迅速增加,在容积负荷达到 40kg COD/m³ d后,产气速率不再随容积负荷的增 加而有明显变化,基本稳定在 15.5m³/d 的水平上, 产气速率为 $7.2 \text{m}^3/\text{d}$ ($4.9 \text{m}^3/\text{m}^3$ ·d) 左右。此时, 若以石灰乳调节进水碱度为 $300 \sim 500 \text{mg/L}$ (以 CaCO₃ 计),制氢反应器的最大持续产气速率可提 高到 $16.8 \text{m}^3/\text{d}$,持续产氢速率可达 $8.4 \text{m}^3/\text{d}$ (容 积负荷 68.21 kg COD/ ($\text{m}^3/\text{-d}$),HRT4.11h),即 $5.7 \text{m}^3/$ (m^3 d)。当容积负荷超过 70 kg COD/ (m^3 d)后,反应器产氢速率出现下降趋势。从气相组 分分析结果来看,发酵气中氢的含量随着有机负荷 的增加也呈上升趋势。当容积负荷增至 35 kg COD/(m^3 d)以上时,气体中氢的含量维持在 50%的水 平。由此分析,发酵生物制氢反应器的最适有机负 荷范围似乎应是 $35 \sim 70 \text{kg} COD/$ (m^3 d)。

但是,从基质的比产氢速率的角度分析,则将 生物制氢反应器的容积负荷控制在 35~55kg COD/ (m³ d)的范围较为适宜。从图 3 可以看出,在容 积负荷小于 10kg COD/(m³ d)的低负荷运行阶 段,随着有机负荷的提高,反应器的比产氢速率迅 速增大;当容积负荷达到 35kg COD/(m³ d)之 后,比产氢速率不仅不随有机负荷的增加而增加, 反而有缓慢下降的趋势;当有机负荷达到大于 55kg COD/(m³ d)的水平时,这种下降趋势更加 显著。

中试运行各阶段对厌氧活性污泥的比产气速率 测试 结 果 (图 4) 证 明,容 积 负 荷 达 到 大 于 40kg *COD*/(m³ d)的水平值以后,单位生物量的比 产氢速率不再随容积负荷的提高而提高,基本维持 在 30mol/kgVSS d 的水平。但由于生物量在一定负 荷范围内,会随着基质浓度的提高而增长,所以反 应器的总产氢量仍会随容积负荷的增加而增加(图 2) 综合以上分析,发酵生物制氢反应器的最适有机负 荷范围应为 35 ~ 55kg *COD*/(m³·d),最大持续产 氢速率为 5.7m³/(m³·d),基质比产氢速率为 26mol/kg *COD*(去除)厌氧活性污泥的比产氢速 率为 30mol/kgVSS-d。

2.2 工程控制参数

2.2.1 温度

微生物都有其适宜生长的温度范围,不同的微 生物种群,其生长的最适温度范围也不一样。最适 生长温度是就繁殖速度,或细胞产量,或发酵速 率,或某一代谢产物具体而言的。因此,微生物群 体生长处于最佳状态时,其某一代谢反应并不一定 能达到最佳水平。研究证明^[8,10],对于发酵生物产 氢代谢而言,当温度控制在 35 ~ 38 范围时,反 应器中的厌氧活性污泥在中温范围内具有较快的发 酵速度,其产气率及有机物酸化率达最大。由中试 运行结果 (图 5) 来看,温度对发酵末端产物组成 影响不大。

Fig. 5 Effect of temperature

on the VFAs produced by fermentation

3)。

表 2 中试运行各阶段进水 pH值与出水 pH值的变化情况

Table 2	Influent	and effluen	tрН	refering t	to the	operating	time	sludge.
---------	----------	-------------	-----	------------	--------	-----------	------	---------

容积负荷	进水	出水	容积负荷	进水	出水	碱度 *
$/ \text{kg} COD \text{ m}^{-3} \text{ d}^{-1}$	pН	pН	$/ \text{kg} COD \text{ m}^{-3} \text{ d}^{-1}$	pН	pН	/ mg L - 1
3.11	7	5.1	27.98	7.1	4.0	240
3.83	7.7	4.7	36.94	8.6	4.0	280
4.28	8.7	4.6	38.84	9.1	4.1	308
11.47	9.7	4.3	44.48	8.5	4.3	340
12.70	9.4	4.5	49.64	8.1	4.0	320
15.49	8.3	4.4	55.30	11.2	4.0	568
20.48	8.9	4.3	56.68	9.4	4.2	376
			68.21	10.7	4.5	740

*碱度以 CaCO₃ 计

2.2.2 pH值

从表 2 可知,中试制氢反应器的进水 pH 值虽 然在 7~11 范围内变化很大,但其出水 pH 值始终 保持在 4.0~4.5,废水的乙醇型发酵也未受到影 响。这一事实证明,乙醇型发酵一旦实现,发酵生 物制氢中反应器中的微生物生态体系即具备了较强 的稳定性和抗荷冲击能力。

图 6 反应器内 ORP 在运行过程中的变化 Fig. 6 Oxidation - reduction potential inside

the bioreacter at different organic loading rate 2.2.3 氧化还原电位

ORP 是微生物正常生长繁殖不可缺少的生态 因子之一,对微生物的生存状态有着重要影响。本 中试研究中,采用在线 ORP/pH 测定仪对反应器 的 ORP 进行了考察。结果(图 6)表明,在生物 制氢反应器正常运行期间,容积负荷虽有较大提 高,但反应器中的氧化还原电位 ORP 基本保持在 - 100~-125mV 的范围,呈现出一定的稳定性。 2.2.4 水力停留时间(*HRT*)

有机基质进入生物制氧反应器后,在各种微生物作用下水解、发酵产酸,同时释放 H₂和 CO₂, 有机物在反应器中的停留时间对这一代谢过程发生 的程度有直接制约作用。停留时间过短,产酸发醇 过程进行得不充分;停留时间过长,会影响反应器 效能的发挥。试验结果(图 7)表明 *HRT*在小至 3.9h时,反应器对有机基质仍具有相当高的酸化 率,说明 3.9h 的停留时间可满足微生物水解、产 酸代谢所需要的必要时间。但是,由于受反应器沉 淀区体积的限制,此时出水中的悬浮物含量达到了 375 mg/L 之多,运行中可观察出水中有大量污泥 絮体流出。大量菌体的流失,最终必然会导致反应 器产氢量的下降。根据试验结果,对于易降解的制 糖废水,生物制氢反应器的 *HRT* 维持在 4~6h 较 为适宜。

2.2.5 碱度

发酵产氢微生物在代谢有机物释放氢气的同时,也产生了大量的乙醇和有机挥发酸(VFA), 而VFA 在反应器中的过多积累会对微生物代谢产 生显著抑制作用。为了增加系统的稳定性,特别是 在高有机负荷(大于 20kg COD/(m³·d)运行条 件下,对进水碱度进行适度调节是十分必要的。试 验结果(表 2)证明,在高有机负荷运行条件下, 进水碱度(以 CaCO₃计)如果维持在 300~ 500mg/L,则可保证乙醇型发酵的最适 pH 值 4~ 4.5,同时可在一定程度上提高厌氧活性污泥的产 氢能力(见2.1);当进水碱度小于300mg/L时, 反应器中的pH值有可能降到4.0以下,使厌氧活 性污泥代谢活力迅速下降,发酵产氢作用将受到严 重抑制。

2.3 反应器运行状态分析

中试正常运行期间,尽管 HRT、进水 COD 浓度等有较大变化,进水的pH 值和碱度也在 7~11和 240~740mg/L 的大范围内变动 (见表 2), 但生物制氢反应器中的微生物始终保持着乙醇型发酵,液相发酵产物以乙酸和乙醇为主,丙酸含量最高时也只有 10% (见表 1),表现出很强的抗冲击负荷能力和运行稳定性。

图 7 HRT 对酸化率及出水悬浮物的影响

Fig. 7 Influence of hydraulic retention time on the acidogenic ratio and suspendedsolid concentration in effluent

图 8 容积负荷对反应器 COD 去除率影响

Fig. 8 COD removal at different organic loading rate

COD 去除率也是考察生物制氢反应器运行状态的一个重要参数。图 8 显示了中试正试运行期间 容积负荷的变化对生物制氢反应器 *COD* 去除率的 影响。试验结果表明,反应器在容积负荷小于 10kg *COD*/(m³ d)范围内运行时,其 *COD* 去除 率可高达 30%以上。随着容积负荷的提高,其 *COD* 去除率逐渐下降,当容积负荷达到大于 20kg *COD*/(m³ d)的水平时,*COD* 的去除率基 本稳定在 20%左右,说明生物制氢反应器的运行 具有良好的稳定性。

3 结 论

1) 有机废水发酵法生物制氢中试研究结果证

明,经驯化的厌氧活性污泥有很强的发酵产氢能 力,对于制糖废水而言,其最大持续产氢能力为 30mol/kgVSS d。

 2)中试生物制氢反应器最佳工程控制参数为:
 温度 35~38 , pH 值 4.0~4.5, HR T4~6h, ORP-100~-125mV,进水碱度 300~500mg/L (以 CaCO₃ 计),最适容积负荷 35~55kg COD/ (m³ d)。反应器的最大持续产氢能力为 5.7m³/m³ d。

3) 中试制氢反应器具有良好的抗负荷冲击能 力和运行稳定性,对制糖废水中的 *COD* 去除率可 达到 20%以上,去除单位 *COD* 可获得 26mol/ kg *COD* 的产氢率。

[参考文献]

- Benemann J. Hydrogen biotechnology: progress and prospects [J]. Nature Biotechnology, 1996, 14: 1101-1103.
- [2] Tanisho, Ishiwata Y. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes
 [J]. Int. J. Hydrogen Energy, 1994, 19: 807-812.
- [3] Tanisho S. Ishiwata Y. Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks [J]. Int. J. Hydrogen Energy. 1955, 20: 541-545.
- [4] Yokoi H, Tokudhige T, Hirose J, et al., Hydrogen

production by immobilized cells of aciduric Enterobater aerogenes strain HO - 39 [J]. J Ferment Bioeng, 1997, 83: 481-484.

- [5] Rachman M A, Nakashimade Y, kakizono T et al. Hydrogen production with high yield and high evolution rate by self - flocculated cells of Enterobacter aerogenes in a packed - bed reactor [J]. J Ferment Bioeng. 1998, 49: 450-454.
- [6] Kumar N, Das D. Biological hydrogen production in a packde bed reator using agroresidues as solid matrices
 [A]. In: Z Q, Mao, T N, Veziro lu, Hydrogen Energy Progress Proceedings of the 13th World Hydrogen Energy Conference [C]. Beijing, China, June 12-15, 2000. 346-369.
- Yokoi H, Ohkawara I, Hirose J et al. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO 39 [J]. J Ferment Bioeng [C]. 1995, 80: 571-574.
- [8] R Nanqi, W Baozhen, M Fang. Hydrogen bio production of carbohydrate by anaerobic activated sludge procdss [A]. Proc. Water Environ Fed Annu Conf. Expo [C]. 68th Date, 1995, 145-153.
- [9] 任南琪,王宝贞.有机废水发酵法生物制氢技术 ——原理与方法 [M].哈尔滨:黑龙江科学技术出 版社,1994.
- [10] 李建政,任南琪.产酸相最佳发酵类型工程控制对策 [J].中国环境科学,1998,18 (5):398-402.

HYD ROGEN BIO - PRODUCTION BY ANAEROBIC FERMENTATION OF ORGANIC WASTEWATER IN PILOT - SCALE

Li Jianzheng, Ren Nanqi, Lin Ming, Wang Yong

(School of Municipial and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China)

Abstract: The biotechnology of hydrogen production by fermentation of anaerobic bacteria has been stuied world wide for a long time. However, most of the studies were carried out in laboratory to investigate the mechanism of hydrogen evolution using pure cultures of anaerobic bacteria while a few efforts on mixed cluture in this study. Using molasses as material, anaerobic activated sludge was researched. In order to find out the industrialized feasibility of hydrogen bio - production, the ability of hydrogen evolution by anaerobic activated slude and the optimal controls parameters were investigated in a pilot - scale test. The results showed that the domesticated anaerobic activated sludge could give a hydrogen yield as high as 30 mol/ kgVSS d in the pilot reactor. The pilot reactor obtained a hydrogen yield of 5. $7m^3/m^3$ d continuously under the conditions as following: temperature 35 , pH 4.0 ~ 4.5, HR T4 ~ 6h, ORP - 100 ~ - 125, effluent alkalinity in terms of CaCO₃ 300 ~ 500 mg/L, volume loading rate 35 ~ 55kg COD/m³ d. The study also indicated that pilot reactor had a better operational stability and an excellent adaptive capacity for organic loading rate. The rate of COD removal reached at about 20 % and a hydrogen production rate of 26mol/ kg COD removal was achieved in this study. Keywords: activated sludge; anaerobic bacteria; fermentation; hydrogen production; pilot 联系人 E- mail: Li - jianzheng @263. net