基于批式呼吸计量法的溶解性 COD 组分划分

周振¹,吴志超^{1*},王志伟¹,花虹²,唐书娟¹,顾国维¹

(1. 同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海 200092; 2. 同济大学数学系,上海 200092)

摘要:利用批式好氧呼吸计量法结合溶解性慢速水解 COD($S_{\rm H}$)水解动力学拟合提出了溶解性 COD(SCOD)的组分划分方案.上海 2 个污水处理厂进水的 SCOD 组分划分结果表明,A 厂沉砂池出水(典型生活污水)的 SCOD 中含有 43.5% ~ 58.6% $S_{\rm H}$ 、 21.8% ~ 35.2%易生物降解 COD($S_{\rm S}$)和 15.4% ~ 30.9%溶解性惰性 COD($S_{\rm I}$); B 厂沉砂池出水(长距离输送的合流制污水) SCOD 中含有 34.5% ~ 45.2% $S_{\rm H}$ 、29.3% ~ 37.7% $S_{\rm S}$ 和 25.6% ~ 31.2% $S_{\rm I}$.9组不同水样的试验拟合结果表明,一级动力学能够很好地描述 $S_{\rm H}$ 的水解过程,A 厂和 B 厂进水 $S_{\rm H}$ 的水解速率常数分别为 28.00 ~ 39.77 d⁻¹和 26.48 ~ 29.52 d⁻¹.该组分划分方案能够实现 $S_{\rm S}$ 积分区域的理论划分,并消除溶解性微生物产物对 $S_{\rm I}$ 测定的影响.

关键词:污水;活性污泥数学模型;COD 组分划分;水解

中图分类号: X703 文献标识码: A 文章编号: 0250-3301 (2009) 01-0075-05

Fractionation of Soluble COD in Wastewater Based on Batch Respirometric Method

ZHOU Zhen1, WU Zhi-chao1, WANG Zhi-wei1, HUA Hong2, TANG Shu-juan1, CU Guo-wei1

(1. State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; 2. Department of Mathematics, Tongji University, Shanghai 200092, China)

Abstract : A fractionation protocol of soluble COD (SCOD) was put forward by combining respirometric method with hydrolysis kinetics of soluble slowly biodegradable COD ($S_{\rm H}$). SCOD fractionation results of two wastewater treatment plants (WWTP) in Shanghai show that the SCOD in sand basin effluents (typical domestic wastewater) of WWTP A is composed of 43.5 %-58.6 % $S_{\rm H}$, 21.8 %-35.2 % readily biodegradable COD ($S_{\rm S}$) and 15.4 %-30.9 % soluble inert COD ($S_{\rm 1}$), and those SCOD fractions in sand basin effluents (combined sewers after long pipeline transportation) of WWTP B are 34.5 %-45.2 %, 29.3 %-37.7 % and 25.6 %-31.2 %, respectively. The linear regression results of respirometric tests data from nine samples demonstrate that the first-order kinetics can reliably describe hydrolysis process of $S_{\rm H}$, and the kinetic constants of $S_{\rm H}$ from WWTP A and B are respectively 28.00-39.77 d⁻¹ and 26.48-29.52 d⁻¹. Experimental results demonstrate that this protocol can achieve theoretical partition for the integration area of $S_{\rm S}$, and also eliminate the effect of soluble microbial products on $S_{\rm I}$ determination.

Key words :wastewater ; activated sludge model ; COD fractionation ; hydrolysis

污水处理厂进水 COD 组分划分与定量测定是 活性污泥工艺设计和模拟的关键步骤. 在活性污泥 数学模型(ASMs)^[1]中,进水 COD 根据生物降解特性 可分为易生物降解组分(S_s)、慢速生物降解组分 (X_s)、惰性组分($S_1 + X_1$)和微生物组分($X_H + X_A + X_{PAO}$). 根据存在形态不同, COD 又分为溶解态 (SCOD)和颗粒态(XCOD). 进水溶解性惰性组分 S_1 在系统中无法去除,其浓度决定了污水处理厂出水 COD 的下限,对某些工业废水而言进水 S_1 可能会成 为出水能否达标的关键性指标^[2]. S_s 则直接与异养 菌增长相关,是活性污泥系统模拟和设计的重要参 数^[3].

组分划分中通常假定 SCOD 为 S_s 和 S_I 之和. 荷兰应用水研究协会 (STOWA) 推荐的进水组分划 分导则^[4]就是通过物化法测定 SCOD,以处理系统出 水 SCOD 估计 S_{I} ,最后间接计算 S_{S} .这一划分方法 在许多污水厂的模拟中得到了广泛应用^[5~9].然而, 已经证实部分 X_{S} (溶解性慢速水解 COD, S_{H})能够 穿过滤膜进入 SCOD,而且以出水 SCOD 估计 S_{I} 很 容易受到溶解性微生物产物(SMP)和系统水力停留 时间分布的影响,因此假定 SCOD 为 S_{S} 和 S_{I} 之和 将导致严重的误差^[1]. Koch 等^[10]对瑞士 2 个污水厂 进水调查表明, ($S_{S} + S_{I}$)与 SCOD 的比值仅为 0.24 ~0.76. 另一方面,呼吸计量法测定 S_{S} 时积分区域 的划分也存在诸多争议,统一的理论划分方法鲜有 报道.

本研究利用批式好氧呼吸计量法结合 $S_{\rm H}$ 水解

收稿日期:2008-01-18;修订日期:2008-03-12

作者简介:周振(1981~),男,博士研究生,主要研究方向为废水处理 原理与技术,Email:zhouzhen.1981@yahoo.com.cn *通讯联系人,Email:wuzhichao@mail.tongji.edu.cn

动力学拟合提出了 SCOD 组分划分的改进方案,以 实现 Ss 积分区域的理论划分,并消除 SMP 对 S1 测 定的影响.利用该方案对上海2个污水处理厂进水 进行 SCOD 组分测定,并根据 SH 水解过程的耗氧速 率(OUR)确定其水解动力学常数.

1 材料与方法

1.1 试验水样

以上海市 2 个污水处理厂(A 厂和 B 厂) 沉砂池 出水为研究对象进行 SCOD 组分划分.其中,A厂进 水为典型的生活污水 .B 厂进水则是由长距离输送 的生活污水和工业废水构成的合流制污水.A厂测 试水样均为晴天瞬时样,而B厂水样则包括晴天瞬 时样、暴雨后期瞬时样和晴天 24 h 混合样,如表 1 所示.

1.2 SCOD 的物化分离

表1	污水水样来源和 SCOD 组分划分	

Table 1	Wastewater	sources and	results for	SCOD	fractions from	batch	test	and	chemical	analysis
---------	------------	-------------	-------------	------	----------------	-------	------	-----	----------	----------

污水处理厂	序号	水样	水温/	COD/mg L ⁻¹	SCOD/mg L ⁻¹	$S_{\rm S}/{\rm mg}~{\rm L}^{-1}$	$S_{\rm H}/{\rm mg}$ L ^{- 1}	$S_{\rm I}/{\rm mg}$ L ^{- 1}
A	A1	晴天瞬时样	28.0	366.3	84.8	20.18	42.88	21.74
	A2	晴天瞬时样	27.8	299.7	84.5	29.73	41.76	13.01
	A3	晴天瞬时样	27.5	465	99.3	25.40	43.24	30.66
	A4	晴天瞬时样	27.7	500.8	118.4	25.77	69.42	23.21
В	B1	晴天瞬时样	27.6	209.4	71.3	23.53	29.33	18.43
	B2	晴天 24 h 混合样	27.8	176.2	65.6	24.71	22.65	18.24
	B3	晴天 24 h 混合样	27.8	219.9	63.8	21.59	22.30	19.91
	B4	晴天 24 h 混合样	26.8	195.2	68.6	20.09	30.98	17.54
	B5	暴雨瞬时样	26.0	136	44.1	5.18	19.29	19.63

污水的 SCOD 通常定义为通过 0.45 µm 微滤膜 的 $COD^{[4,11,12]}$. Hu 等^[13] 对多种物化分离方法的比较 表明,硫酸锌混凝过滤法中的絮体对 SCOD 吸附量 很小,其上清液 COD 接近真溶液 COD. 因此本研究 采用该方法进行 SCOD 物化分离,步骤如下: 向 约1L待测水样中加入10mL100g/L的硫酸锌,在 磁力搅拌器快速搅动的条件下用 6 mol/L NaOH 调节 pH值至10.5左右; 磁力搅拌器高速混合 1 min, 慢速搅拌 5 min,静沉分离; 滤纸过滤固液分离后 的上清液,滤液再用 100 mL 左右的蒸馏水冲洗的 0.45 µm 聚醚砜滤膜(Gelman Supor 450)^[14]过滤.

1.3 批式好氧呼吸计量试验

取污水厂曝气池混合液空曝 24 h,随后用蒸馏 水清洗污泥 2~3次,以消除混合液中残留有机物的 影响^[15]. 试验前根据污水 SCOD(F) 和清洗后污泥 VSS(M)的比值(F/M为 0.01 ~ 0.2^[16])确定所需的 污泥体积 V_{As}和污水体积 V_w. 首先以蒸馏水替代污 水测定污泥的内源呼吸 OUR (OUR_{ER}). 由于试验历 时较短,污泥没有显著性生长,因此假定整个试验过 程中 OUR_{IR}恒定,以此作为试验终点的判定标准.测 定完毕后,将污泥固液分离后保留体积为 V_{AS}的混 合液,随后加入体积为 Vw 的污水,自养菌的硝化作 用采用 20 mg/L的烯丙基硫脲抑制^[15].测定过程中, 利用磁力搅拌保证反应器内良好的混合状态,连续 监测 OUR 的变化. 当 OUR 降低至事先测定的 OUR_{ER}

且长时间不再明显变化时,试验停止.试验温度控制 在(26 ±0.3) ,pH值控制在 7.0~7.5. 由于试验历时 较短且碱度消耗量较小,pH值控制可根据pH计的读 数变化利用蠕动泵加入 HCI 或 NaOH 进行调节.

1.4 分析项目与方法

COD、SS 和 VSS 测定按照国家标准方法^[17]进 行;DO测定采用可与计算机连接的 YSI 5100 型溶解 氧仪进行,OUR 计算采用 1 min 平均值. pH 值采用 PHB-1型便携式 pH 计测定. 模型组分计算及曲线拟 合采用 MATLAB 7.0 完成.

2 结果与讨论

2.1 典型 OUR 曲线及区域划分方案

在抑制自养菌活性的批式好氧呼吸计量试验 中,异养菌降解生活污水中 SCOD 的典型 OUR 曲线 如图1所示.3次试验的OUR曲线基本重合,表明 试验具有很好的重现性,图1的OUR曲线可划分为 高OUR 阶段 S1、低 OUR 阶段 S2 和内源呼吸阶段 S3. STOWA 的组分划分导则^[4] 实际上忽略了阶段 S2,这会过高估计污水中的 Ss 含量.

阶段 S1、S2 和 S3 的划分是 COD 组分划分中的 关键性问题,目前很少有实现3阶段理论划分的报 道. 由图 1 可见, 在 OUR 值降低至事先测定的 OUR_{ER}时,可认为 OUR 曲线由阶段 S2 进入阶段 S3. 而阶段 S1 和 S2 的划分则主要是基于降解速率的不

1期

图 1 抑制硝化后生活污水的典型 OUR 曲线(3 组平行试验) Fig. 1 Typical OUR profile for domestic wastewater after nitrification inhibition (3 parallel tests)

同,在图1中表现为OUR 曲线的突降,即阶段 S1 和 S2 的分隔点将在 OUR 曲线斜率最大值附近.另一 方面,在阶段 S2 的 OUR 曲线中扣除 OUR_{ER}后即为 S_H 水解引起的 OUR_{S_H},可利用相应的动力学方程对 阶段 S2 的 OUR 曲线进行拟合.基于此,可认为阶段 S1 和 S2 准确划分时水解过程拟合的可决系数值最 高.由此,可得出理论划分 S1 和 S2 阶段的方法:首 先确定 OUR 曲线斜率最大值对应的点,然后以水解 过程拟合的可决系数最高为目标函数,在斜率最大 值附近利用一维搜索法确定阶段 S1 和 S2 的分隔 点.因此,在确定 S_H 水解动力学后,可通过计算机 编程在计算过程中自动完成 3 阶段的划分.

2.2 S_H的测定及其水解动力学

*S*_H 水解动力学的确定是 SCOD 组分划分方案 中 *s*_s 和 *s*_H 定量的关键.由于 *s*_H 的水解速率远低 于 *s*_s 的快速降解速率,因此在底物中只存在 *s*_H 时,水解将成为异养菌生长的控制步骤.*s*_H 水解引 起的 OUR_s,应满足:

$$OUR_{S_{\rm H}} = \frac{dS_0}{dt} = (1 - Y_{\rm H}) \frac{dS_{\rm H}}{dt}$$
 (1)

根据 ASMs^[1] 对 *X*s 的定义,由于慢速降解有机 物的范围覆盖了粒径分布较广的溶解态、胶体态和 结构复杂的颗粒态有机物^[18,19],所以 *X*s 水解多采 用表面限制反应动力学进行描述.但对于溶解态的 慢速水解有机物 *S*_H 而言,其水解速率将不受表面 吸附作用的影响,因此在历时较短的呼吸计量试验 中,可采用一级水解动力学进行描述^[16,20].故 *S*_H 水 解速率可表示为:

$$\frac{dS_{\rm H}}{dt} = -k_{\rm H}S_{\rm H} \tag{2}$$

式(2)积分并与式(1)联立,得:

$$OUR_{S_{H}} = (1 - Y_{H}) k_{H} S_{H0} e^{(-k_{H}t)}$$
(3)

式中 S_{HD}为试验起始时 S_H.式(3)两边取对数,得:

 $\ln(OUR_{S_{H}}) = \ln[(1 - Y_{H}) k_{H} S_{H0}] - k_{H} t \quad (4)$

利用 S2 阶段的 OUR 数据与 t 进行拟合,可求取 $S_{\rm H}$ 的水解动力学方程,将其外推至阶段 S1 即可完成 $S_{\rm S}$ 和 $S_{\rm H}$ 积分面积的理论划分,如图 2 所示.

图 2 上海 2 个污水处理厂沉砂池出水的 SCOD 组分划分 Fig. 2 SCOD fractionation of sand basin effluents in two wastewater treatment plants in Shanghai

式(4)的直线斜率即为 S_H的水解动力学常数 k_H, S_H可由式(4)的斜率 k 和截距 b 进行计算:

$$S_{\rm HD} = \frac{1}{1 - Y_{\rm H}} \frac{e^{b}}{k}$$
(5)

式中, *Y*_H取 0.67^[1](下同);式(5)计算的 *S*_B值如表 1 所示. A 厂沉砂池出水的 *S*_H/COD 和 *S*_H/SCOD 分 别为 9.3%~13.9%和 43.5%~58.6%;这 2个比例 在 B 厂沉砂池出水中相对偏低,分别为 10.1%~ 15.9%和 34.5%~45.2%.暴雨对合流制污水中 S_H 含量的影响较小.

表 2 列出了式 (4) 拟合得到的各水样试验的 $k_{\rm H}$ 值,线性回归可决系数都在 0.89 以上, Dixon 检验的

77

J

表 2 9 个不同水样中 S_H水解的一级动力学常数(d⁻¹)及可决系数

Table 2 First-order hydrolysis kinetic constants (d^{-1}) for $S_{\rm H}$ of nine different samples

水样	A1	A2	A3	A4	B1	B2	В3	B4	B5
$k_{\rm H}/{\rm d}^{-1}$	39.77	28.00	32.72	31.83	28.82	29.56	26.48	27.76	27.98
r^2	0.8968	0.9384	0.9352	0.9261	0.9040	0.8957	0.9361	0.9271	0.9207

结果表明可决系数均达到了1%显著水平(< 0.001)^[21],因此 S_H的水解过程可采用一级动力学 描述.A 厂和 B 厂的 k_H 分别为 28.00~39.77 d⁻¹和 26.48~29.52 d⁻¹,这一结果明显高于 Gnestet 等^[20] 测定的法国 7 个污水处理厂进水总 X_s 的水解速率 常数 6.2~12.0 d⁻¹,因此在活性污泥系统模拟中可 考虑采用双水解速率模型^[2]代替 ASMs 中的单水解 速率模型.本研究的 $k_{\rm H}$ 略高于 Gnestet 等^[20]在 20 下测得的 k_H 值 10.1~22.8 d⁻¹,这可能是由于水温 及中西方污水水质的差异造成的.

2.3 Ss 的测定

对于包括 3 阶段的完整 OUR 曲线,溶解性可生 物降解 COD(BSCOD) 可计算为:

> BSCOD = $\frac{1}{1 - Y_{\text{H}}} \int_{0}^{t_2} (\text{OUR}_{\text{m}} - \text{OUR}_{\text{ER}}) dt$ (6)

式中,OUR_m 为试验得到的 OUR 值; t₂ 为阶段 S2 的 终点.BSCOD 与 $S_{\rm H}$ 之差即为 $S_{\rm s}$.即:

$$S_{s} = BSCOD - S_{H0}$$
 (7)
式(7)计算的 S_{s} 如表 1 所示. A 厂沉砂池出水的 S_{s} /
COD 和 $S_{s}/SCOD$ 分别为 5.1% ~ 9.9%和 21.8% ~
35.2%;在 B 厂沉砂池出水中这 2 个比例分别为

9.8%~14.0%和29.3%~37.7%.降雨会明显降低 合流制污水 SCOD 中 S_s 的含量 (表 1),这很可能是 由于雨水的稀释作用造成.

2.4 S1 的测定

COD 和

在计算确定 S_s和 S_н后, S₁可计算为:

$$S_{\rm I} = {\rm SCOD} - {\rm BSCOD}$$
 (8)

利用式(8)计算 S_1 能够有效消除 SMP 对 S_1 测定的 影响.为了验证方法的准确性,本研究采用 Orhon 等^[22]的方法进行对比,与呼吸试验平行进行相同 COD 浓度的乙酸钠配水呼吸试验,测定2组呼吸试 验结束时的 SCOD,两者之差即为 $S_{1.}$ 2 种方法的测 定值对比如图 3 所示,从中可见,2 种方法得到的 S_1 实测值十分接近,但就试验操作的简单性而言, 本研究的方法要优于文献方法.

利用式(8)计算得到的 S₁ 值如表 1 所示. 由表 1 知,在A厂沉砂池出水中, S_1 /COD和 S_1 /SCOD分别

图 3 2 种 S_I 测定方法的实测值比较

Fig. 3 Comparison of measured S_I values by two different methods

为 4.3 % ~ 6.6 % 和 15.4 % ~ 30.9 %; 在 B 厂沉砂池 出水中,这2个比例分别为8.8%~10.4%和25.6% ~31.2%. 与晴天水样相比, 暴雨时合流制污水中 $S_{\rm I}$ /COD 和 $S_{\rm I}$ /SCOD 明显增加,这可能是由于工业污 水溢流等原因造成的.

3 结论

(1) 针对 SCOD 组分划分中 S_s 积分区域划分不 明确、忽略组分 $S_{\rm H}$ 以及 $S_{\rm T}$ 测定易受 SMP 影响的问 题,利用批式好氧呼吸计量法结合 S_H 水解动力学 拟合提出了 SCOD 的组分划分方案.

(2) A 厂沉砂池出水 SCOD 中含有 43.5%~ 58.6% $S_{\rm H}$ 、21.8% ~ 35.2% $S_{\rm S}$ 和 15.4% ~ 30.9% S₁;B 厂沉砂池出水 SCOD 中含有 34.5%~45.2% S_H、29.3%~37.7%S_s和25.6%~31.2%S₁.暴雨 对由长距离输送生活污水和工业废水构成的合流制 污水的 SCOD 组分具有很大的影响.

(3) 试验数据拟合结果表明,一级动力学能够 很好的描述 S_H 水解过程 ,A 厂和 B 厂沉砂池出水 $S_{\rm H}$ 的水解速率常数分别为 28.00 ~ 39.77 d⁻¹和 26.48 ~ 29.52 d⁻¹.

参考文献:

[1] Henze M, Gujer W, Mino T, et al. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 [R]. London: IAW Publishing, 2000.

[2] Orhon D, Cokgör E U. COD fractionation in wastewater

78

characterization the state of the art [J]. J Chem Tech Biotechnol, 1997, **68**(3): 283-293.

- [3] Çokgör E U, Sözen S, Orhon D, et al. Respirometric analysis of activated sludge behaviour-I: assessment of the readily biodegradable substrate [J]. Water Res, 1998, 32(2): 461-475.
- [4] Roeleveld P J, van Loosdercht M C M. Experience with guidelines for wastewater characterization in the Netherlands [J]. Water Sci Technol, 2002, 45(6): 77-87.
- [5] Brdjanovic D, van Loosdercht M C M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder
 [J]. Water Res, 2000, 34(3): 846-858.
- [6] Salem S, Berends D, Heijnen J J, et al. Model-based evaluation of a new upgrading concept for N-removal [J]. Water Sci Technol, 2002, 45(6): 169-176.
- [7] Makinia J , Swinarski M , Dobiegala E. Experiences with computer simulation at two large wastewater treatment plants in northern Poland
 [J]. Water Sci Technol , 2002 , 45(6) : 209-218.
- [8] Makinia J, Rosenwinkel K H, Spering V. Long-term simulation of the activated sludge process at the Hanover-Günnerwald pilot WWTP
 [J]. Water Res, 2005, 39(8): 1489-1502.
- [9] Wang C, Zeng Y, Lou J, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model [J]. Biochem Eng J, 2007, 33(3): 217-227.
- Koch G, Kühni M, Gujer W, et al. Calibration and validation of activated sludge model no. 3 for Swiss municipal wastewater [J].
 Water Res, 2000, 34(14): 3580-3590.
- [11] Dogruel S, Genceli E A, Babuna F G, et al. An investigation on the optimal location of ozonation within biological treatment for a tannery wastewater [J]. J Chem Tech Biotechnol, 2006, 81 (12): 1877-1885.

- [12] Pozo R D, Ta || D O, Dulkadiroglu H, et al. Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions [J]. J Chem Tech Biotechnol, 2003, 78(4): 384-391.
- [13] Hu Z, Chandran K, Smets B F, *et al.* Evaluation of a rapid physical-chemical method for the determination of extant soluble COD
 [J]. Water Res, 2002, 36(3): 617-624.
- Khan E, Subramania-Pillai S. Interferences contributed by leaching from filters on measurements of collective organic constituents [J].
 Water Res, 2007, 41(9): 1841-1850.
- [15] Benes O, Spanjers H, Holba M. Respirometry techniques and activated sludge models[J]. Water Sci Technol , 2002, 46(4-5): 1-6.
- [16] Mathieu S, Etienne P. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various So/Xo ratios [J]. Water Res, 2000, 34(4): 1233-1246.
- [17] 国家环境保护总局.水和废水监测分析方法[M].(第四版). 北京:中国环境科学出版社,2002.
- [18] Morgenroth E, Kommedal R, Harremoës P. Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment-a review[J]. Water Sci Technol , 2002 , 45(6) : 25-40.
- [19] Karahan Ö, Dogruel S, Dulekgurgen E, et al. COD fractionation of tannery wastewaters-particle size distribution, biodegradability and modeling[J]. Water Res, 2008, 42(4-5): 1083-1092.
- [20] Ginestet P, Maisonnier A, Sp éandio M. Wastewater COD characterization: biodegradability of physico-chemical fractions [J]. Water Sci Technol, 2002, 45(6): 169-176.
- [21] 陶澎. 应用数理统计方法 [M]. 北京:中国环境科学出版社, 1994.
- [22] Orhon D, Karahan O, Sözen S. The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters [J]. Water Res, 1999, 33(14): 3193-3203.