Acta Scientiae Circum stantiae

张瑛洁,马军,宋磊,等. 2009.树脂负载 Fe<sup>3+</sup>/Cu<sup>2+</sup>多相类芬顿降解染料橙黄 [J].环境科学学报, 29(7): 1419 - 1425 Zhang Y J, Ma J, Song L, *et al* 2009. Degradation of Orange IV dye solution catalyzed by Fe<sup>3+</sup>/Cu<sup>2+</sup> baded resin in the presence of H<sub>2</sub>O<sub>2</sub> [J]. Acta Scientiae Circum stantiae, 29(7): 1419 - 1425

## 树脂负载 $\mathbf{Fe}^{3+}$ / $\mathbf{Cu}^{2+}$ 多相类芬顿降解染料橙黄

### 张瑛洁<sup>1,2</sup>,马军<sup>2,\*</sup>,宋磊<sup>1</sup>,柳旭升<sup>2</sup>,赵吉<sup>2</sup>,吴培瑛<sup>1</sup>

1. 东北电力大学化学工程学院, 吉林 132012

2 哈尔滨工业大学市政环境工程学院,城市水资源开发利用(北方)国家工程研究中心,哈尔滨 150090 收稿日期: 2008-12-21 录用日期: 2009-05-22

摘要:制备了新型多相类 Fenton催化剂 (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R (Fe<sup>3+</sup>和 Cu<sup>2+</sup>同时负载于离子交换树脂),以橙黄 为研究对象,探讨了初始过氧化 氢浓度、橙黄 浓度、催化剂量、初始 pH值及温度等因素对催化反应速率的影响,并对该催化剂重复使用性能进行测试.研究结果表明,该催 化剂 (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R 与 Fe<sup>3+</sup>/R相比表现出更好的催化过氧化氢分解的活性,使橙黄 的降解率提高 10%;催化过氧化氢氧化橙黄 的反 应遵循假一级反应动力学,反应活化能为 10.71kJ·mol<sup>-1</sup>;催化剂表现出良好的重复使用性能,Fe<sup>3+</sup>和 Cu<sup>2+</sup>在树脂表面负载比较牢固,具有较 好的稳定性和耐用性.同时,电子顺磁共振 (EPR)测试结果表明,Cu<sup>2+</sup>的掺杂能有效地促进 OH·的产生;X射线光电子能谱 (XPS)测试结果 表明,反应过程中存在高价态铁物种.因此,在该体系反应过程中产生的活性物种是 OH·和高价态铁同时共存.

关键词:类 Fenton;橙黄 ;羟基自由基;高价铁;离子交换树脂

文章编号: 0253-2468 (2009) 07-1419-07 中图分类号: X703 文献标识码: A

# Degradation of Orange IV dye solution catalyzed by $Fe^{3+}/Cu^{2+}$ loaded resin in the presence of $H_2O_2$

ZHANG Yingjie<sup>1,2</sup>, MA Jun<sup>2,\*</sup>, SONG Lei<sup>1</sup>, LIU Xusheng<sup>2</sup>, ZHAO Ji<sup>2</sup>, WU Peiying<sup>1</sup>

1. School of Chemical Engineering, Northeast Dianli University, Jilin 132012

2 School of Municipal and Environmental Engineering, Harbin Institute of Technology, National Engineering Research Center of Urban Water Resources, Harbin 150090

Received 21 December 2008; accepted 22 May 2009

Abstract: A new heterogeneous catalyst,  $Fe^{3+}/Cu^{2+}/R$  where  $Fe^{3+}$  and  $Cu^{2+}$  were exchanged into cationic exchange resin D001 (R), was prepared which had a better catalytic reactivity to decompose  $H_2O_2$  than  $Fe^{3+}/R$ . The removal rate of Orange V increased 10% with this catalyst compared with  $Fe^{3+}/R$ . The effect of the initial concentration of  $H_2O_2$ , the initial dye concentration, the catalyst dosage, the initial pH and temperature on the reaction rate constant was also studied. The reaction follows p seudo-first-order kinetics. The activation energy for  $Fe^{3+}/Cu^{2+}/R$  catalyzed oxidation of the dye was determined to be 10. 71 kJ·mol<sup>-1</sup>. Repeated use of catalyst did not decrease the removal rate of Orange V. EPR (electron paramagnetic resonance) showed that the addition of  $Cu^{2+}$  into the catalyst of  $Fe^{3+}/R$  could effectively enhance the formation of OH. XPS (X-ray photoelectron spectroscopy) measurements showed that a ferryl species was formed during the reaction. So the reactive intermediates for this reaction were both OH· and ferryl species

Keywords: Fenton-like; Orange N; hydroxyl radical; ferryl; ion exchange resin

1 引言 (Introduction)

染料废水是我国目前几种难治理的废水之一, 具有种类多、有机污染物含量高、水质成分复杂、色 度深和毒性大等特点.随着染料和印染工业的迅速 发展,染料污水排放量逐渐增加,对环境的危害日 趋严重.近年来,光助多相类 Fenton作为一种高级 氧化技术已经应用于染料废水的处理.已有学者报

#### 基金项目:国家高技术研究发展计划(863)项目(Na 2006AA06Z306)

Supported by the Hi-Tech Research and Development Program of China (No. 2006AA06Z306)

作者简介:张瑛洁 (1969—),女,博士研究生, Ernail: zhangyingjiejls@yahoo.com.cn; \*通讯作者 (责任作者), Ernail: majun@hit edu cn Biography: ZHANG Yingjie (1969—), female, Ph D. candidate, Ernail: zhangyingjiejls@yahoo.com.cn; \* Corresponding author, Ernail: majun@hit edu cn

道了用 Nation离子交换膜负载铁或铁络合物在光 照下对染料废水进行处理 (Fernandez et al, 1999; Kiwi et al, 2002; Parra et al, 2004a; 2004b; Dhananjeyan et al, 2001);也有学者研究了用离子 交换树脂负载铁在光照下处理染料和苯酚废水 (Cheng et al, 2004; Liou et al, 2005; 高冠道等, 2006; L üet al, 2005). 离子交换膜 (树脂) 是高分子 聚合物,对铁具有很强的络合作用,表现出许多与 其单体不同的性质 (Tsuchida, 1991). 多相类 Fenton 与均相类 Fenton相比,其最主要的特点是避免了 Fe(OH)。沉淀的产生,催化剂可循环使用,但其反 应速率比均相反应速率慢,为加快多相类 Fenton氧 化反应的反应速度,本文采用 Fe<sup>3+</sup>和 Cu<sup>2+</sup>共同负载 到离子交换树脂上的双金属负载类 Fenton体系,研 究 Cu<sup>2+</sup>的掺杂对多相类 Fenton氧化体系反应速度 的影响,并考察该催化剂催化过氧化氢对橙黄 的 降解动力学及反应机理.

2 实验材料与方法 (Materials and methods)

2.1 实验材料及仪器

实验所用药品 Fe (NO<sub>3</sub>)<sub>3</sub> · 9H<sub>2</sub> O、NaF、 Cu (NO<sub>3</sub>)<sub>2</sub>、橙黄 、30% H<sub>2</sub>O<sub>2</sub>以及 HC1等各种试剂 均为分析纯. 5, 5二甲基—1吡咯啉 -n氮氧化物 (DMPO, Sigama-Aldrich)作为 EPR 实验中的自由基 捕获剂;超纯水来自 Milli-Q (18.3M · cm<sup>-1</sup>)系统, 用于药品配置和 EPR 实验;橙黄 溶液用蒸馏水配 置;实验中的树脂采用 D001大孔阳离子交换树脂 (上海争光树脂厂);水样的 pH 值通过稀 NaOH和 稀 HCD<sub>4</sub>溶液调节.

2.2 催化剂的制备

为了去除新树脂中的杂质并且活化树脂,必须 对其进行预处理.步骤为:新树脂先用质量分数为 4% NaOH溶液浸泡 5 h,然后用蒸馏水洗至中性;再 用 5% HCl浸泡 5 h,最后用蒸馏水清洗,直至 pH值 约为中性.将上述过程重复 3次.

催化剂的制备过程为:室温下称取干燥的树脂 50 mg,放入 200 mL锥形瓶内,向锥形瓶加入 10 mL Cu (NO<sub>3</sub>)<sub>2</sub> (0.1 mol·L<sup>-1</sup>)溶液和 20 mL Fe (NO<sub>3</sub>)<sub>2</sub> (0.1mol·L<sup>-1</sup>)溶液;将锥形瓶放入空气浴恒温振荡 器 (25°C,110 r·m in<sup>-1</sup>)中反应 12 h后取出,用蒸馏 水洗涤催化剂 5次后将水倒净,湿态贮存备用.用等 离子发射光谱 (ICP, Perkin Elmer Optima 5300 DV Inductively Coupled Plasma Optical Emission Spectrometry)测定溶液中铁离子浓度的变化,得到 1g树脂上铁的负载量为(100 ±5)mg

2.3 实验方法

在装有催化剂的锥形瓶中,将蒸馏水倒净后加入 30 mL一定浓度的橙黄 溶液,使用稀 NaOH或 HCD₄溶液调节所需要的 pH值.将锥形瓶置于恒温 振荡器中,设定温度.此时加入 1 mL一定浓度的 H<sub>2</sub>O<sub>2</sub>,反应开始计时,控制振荡器转速约为 110 r·m in<sup>-1</sup>.每间隔一段时间取样 1 mL,用于测量目标 物的降解情况.

2.4 实验分析方法

橙黄 的浓度用 UV-4802 UV /Vis分光光度计 测量,特征吸收峰在波长 440 nm 处.使用 pHS - 3C 型 pH计测量 pH值.用 X射线光电子能谱(XPS) 测定树脂上铁的价态的变化,仪器为美国物理电子 PHI5700 ESCA System电子能谱仪,采用双阳极 Mg K 射线作为辐射源,用 C1s 285.0 eV 作内标.

用 DMPO 自旋捕捉方法直接测定羟基自由基, 仪器为德国布鲁克公司 A200S-9.5/12型电子顺磁 共振波谱仪 (ESR),仪器条件中心场强为 3512 G; 扫描宽度为 100 G,微波频率为 9.84 GHz,功率为 2 27 mW,倍增器放大倍数 1.42 ×10<sup>4</sup>,扫描 5次的 加权平均值作为最终记录结果.

3 结果 (Results)

3.1 催化剂的制备及影响因素研究

3.1.1 铜铁不同比例对橙黄 降解的影响 在 橙黄 初始浓度:0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度:15 mmol·L<sup>-1</sup>;催化剂量:50 mg;温度:22 ;初始 pH: 4.2的条件下,改变催化剂中负载的铜和铁的摩尔 比,其对橙黄 降解的影响如图 1所示.从图 1可



图 1 不同影响因素对橙黄 降解的影响 Fig 1 Different effective factors io on the degradation of Orange

以看出,随着铜离子浓度的增加,即铜和铁的物质 的量比由 1 1增大为 10 1时,橙黄 的降解率降 低;而随着铁离子浓度增加,即比当铜和铁比例由 1 2增大为 1 5时,降解率降低.这就说明在多相类 Fenton体系中,少量的铜的掺杂能提高橙黄 的降 解效果.当铜和铁物质的量比为 1 2时,橙黄 的 降解效果最好.

3.1.2 铜和铁负载顺序对橙黄 降解的影响 在 橙黄 初始浓度:0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度:15 mmol·L<sup>-1</sup>;催化剂量:50 mg;温度:23 ;初始 pH: 4.2;在铜和铁的摩尔比为 1.2的条件下,考察铜和 铁的负载顺序对橙黄 降解效果的影响,结果如图 2所示.由图 2可知,先负载铜或先负载铁制备的催 化剂都没有铜铁同时负载的效果好.这可能是由于 先负载铜而导致催化剂的主要成分是铜,导致催化 效果反而降低;当先负载铁时,铜离子将很难负载 其上,因为二价铜离子与树脂的结合能力要小于 3 价铁离子与树脂的结合能力.而当铜铁同时负载时 其催化效果最好,在反应进行 3 h时,橙黄 的降 解率能提高 30%.



图 2 铜和铁负载顺序对橙黄 降解的影响



3.1.3 不同催化剂对橙黄 降解效果的影响 在 橙黄 初始浓度:0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度:15 mmol·L<sup>-1</sup>;催化剂量:50 mg,温度:21 ;初始 pH: 4.3;铜铁物质的量比为 1 2;铜和铁同时负载的条件 下,考察了 ( $Fe^{3+} + Cu^{2+}$ )/R、 $Fe^{3+}$ /R及  $Cu^{2+}$ /R催 化过氧化氢处理橙黄 的效果 (图 3).橙黄 是阴 离子染料,树脂对其吸附率很低,在实验时间内树 脂对橙黄 的吸附率仅为 0.24%,因此,橙黄 的 降解主要是由于氧化而引起的.从图 3可以看出, 橙黄 的降解率由大到小依次是  $(Fe^{3+} + Cu^{2+})/R$ >  $Fe^{3+}/R > Cu^{2+}/R$ . 掺杂了  $Cu^{2+}$ 的类 Fenton比 普通的类 Fenton体系降解效果要好,橙黄 的降解 率提高了 10%,说明  $Cu^{2+}$ 的加入确实强化了类 Fenton反应. 这是由于  $Cu^{2+}$ 能促进电子转移,从而 加强橙黄 的降解效果.



图 3 不同类型催化剂对过氧化氢降低橙黄 降解的影响 Fig 3 Effects of different catalysts on the degradation of Orange

3.2 不同条件下橙黄 的降解动力学研究 3.2.1 过氧化氢初始浓度对橙黄 降解的影响 在橙黄 初始浓度:0.4 mmol·L<sup>-1</sup>;催化剂量:50 mg;温度:23 ;初始 pH:4.4的条件下,考查了过 氧化氢初始浓度对橙黄 降解效果的影响,结果见 如图 4.从图 4可以看出,当过氧化氢浓度大于 15 mmol·L<sup>-1</sup>时,随着过氧化氢浓度的增加,橙黄 的 降解率反而下降.在本实验条件下,最佳的过氧化 氢浓度是 15 mmol·L<sup>-1</sup>.不同初始过氧化氢浓度下 的反应速率常数见表 1.



表 1 H<sub>2</sub>O<sub>2</sub>初始浓度对应的反应速率常数

| Table 1 Reaction rate con     | 1 Reaction rate constant at different concentrations of H <sub>2</sub> O <sub>2</sub> |        |  |  |
|-------------------------------|---------------------------------------------------------------------------------------|--------|--|--|
| 初始浓度 /(mmol·L <sup>-1</sup> ) | $K_{\rm obs}$ / h <sup>-1</sup>                                                       | $R^2$  |  |  |
| 5                             | 0. 305                                                                                | 0. 937 |  |  |
| 10                            | 0. 797                                                                                | 0. 989 |  |  |
| 15                            | 0. 862                                                                                | 0. 988 |  |  |
| 20                            | 0. 478                                                                                | 0. 960 |  |  |
| 25                            | 0. 704                                                                                | 0. 980 |  |  |
| 50                            | 0.811                                                                                 | 0. 979 |  |  |

3.2.2 初始 pH 对橙黄 降解的影响 在橙黄 初始浓度 0.4 mmol·L<sup>-1</sup>; H<sub>2</sub> O<sub>2</sub> 初始浓度: 15 mmol·L<sup>-1</sup>;催化剂量: 50 mg;温度: 24 的条件下, 初始 pH 对橙黄 降解效果的影响如图 5所示.由 图 5可知,随着初始 pH 值从 3.1到 10.7,橙黄 的 降解率在初始反应阶段差别很大,但随着反应时间 的延长,差别逐渐减小.在不同 pH 值条件下的反应 速率常数见表 2.由表 2可知,当 pH 值为 10.7时, 橙黄 仍能有效地降解,反应过程中没有发现铁的 溶出.在均相类 Fenton反应中,其最佳的 pH 值为 2 ~3. pH 值过高,会导致铁离子的沉淀,而过低的 pH 值使 Fe<sup>3+</sup>很难被还原为 Fe<sup>2+</sup>,这样对所处理的废水 pH 值要求比较苛刻.



图 5 初始 pH对橙黄 降解的影响

Fig 5 Effect of initial pH on the degradation of Orange

| 表 2 | 不同初始 | pH对应的反应速率常数 |
|-----|------|-------------|
|-----|------|-------------|

| Table 2 | Reaction rate constant at different pH |        |  |
|---------|----------------------------------------|--------|--|
| pH      | $K_{\rm obs}$ / h <sup>-1</sup>        | $R^2$  |  |
| 3. 1    | 1. 115                                 | 0. 981 |  |
| 5. 2    | 1. 197                                 | 0. 997 |  |
| 8. 6    | 1. 129                                 | 0. 997 |  |
| 10. 7   | 0. 958                                 | 0. 998 |  |

3.2.3 温度对橙黄 降解的影响 在橙黄 初始 浓度 0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度: 15 mmol·L<sup>-1</sup>; 催化剂量: 50 mg,初始 pH: 4.9的条件下,温度对 橙黄 降解效果的影响如图 6所示.从图 6可以看 出,随着温度的增加,反应速率加快,反应符合假一 级反应动力学方程.以  $\ln K_{ob}$ 对 1/T作图,如图 7所 示,反应的活化能为 10.71 kJ mol<sup>-1</sup>.



图6 温度对橙黄Ⅳ降解的影响





困/ 催化氧化恒頁Ⅳ 的阿ピ尼乌斯曲致

Fig. 7 Arrhenius plot for the oxidation of Orange IV

3.2.4 橙黄 初始浓度对橙黄 降解的影响 在  $H_2O_2$ 初始浓度:15 mmol·L<sup>-1</sup>;催化剂量:50 mg温 度:25 ;初始 pH:4.0的条件下,改变橙黄 的初 始浓度,( $Fe^{3+} + Cu^{2+}$ )/R 催化过氧化氢降解 橙黄 的结果如图 8所示.表 3为不同橙黄 初始 浓度催化反应速率常数及可决系数.由图 8和表 3 可见,初始橙黄 的浓度越高,反应速率越快.反应 速率常数与反应的初始浓度具有很好的线性关系, 以反应速率常数为纵坐标,初始反应浓度为横坐标 作图,如图 9所示.





Fig 8 Effect of initial concentration of dye on the degradation of O range

表 3 不同橙黄 初始浓度时的反应速率常数

Table 3 Reaction rate constant at different concentrations of Orange

| 初始浓度 /(mmol·L <sup>-1</sup> ) | $K_{\rm abs} / h^{-1}$ | $R^2$  |
|-------------------------------|------------------------|--------|
|                               | 005                    |        |
| 0. 5                          | 0. 611                 | 0. 966 |
| 0. 4                          | 0. 553                 | 0. 981 |
| 0. 3                          | 0. 423                 | 0. 979 |
| 0. 2                          | 0. 334                 | 0. 955 |
| 0. 1                          | 0. 093                 | 0. 935 |





Fig 9 Relationship between initial concentration of Orange and reaction rate constant

3.2.5 催化剂投量对橙黄 降解的影响 在 橙黄 初始浓度: 0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度: 15 mmol·L<sup>-1</sup>;温度: 21 ;初始 pH: 4.5的条件下,考 察了催化剂的用量对催化过氧化氢反应的影响,如 图 10所示. 从图 10可以看出,催化剂投量为 0.8 g·L<sup>-1</sup>时,反应 2 h后橙黄 降解率为 17%;提高催 化剂投量至 3.3 g·L<sup>-1</sup>,反应 2h后橙黄 降解率为 94%,可见增加催化剂量明显地加快了反应速度. 这是由于增大催化剂的投加量,意味着提供了更大的反应界面,橙黄 降解效果因此会有所提高.





Fig 10 Effect of catalyst dosage on the degradation of Orange

#### 3.3 催化剂反复使用对降解效率的影响

催化剂的使用寿命是催化剂能否被推广使用 的一个重要因素.本文考察了( $Fe^{3+} + Cu^{2+}$ )/R催 化剂的重复使用情况,在橙黄 初始浓度:0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始浓度:15 mmol·L<sup>-1</sup>;催化剂量: 50 mg温度:24 ;初始 pH:4.6的条件下,结果见 图 11. 由图 11可知,将( $Fe^{3+} + Cu^{2+}$ )/R催化过氧 化氢降解橙黄 连续运行 5 h,橙黄 的降解率达 到 98.5%;重复进行了 3次连续性实验,催化剂仍 然显示出较好的催化活性和稳定性,橙黄 的降解 率一直保持在 80%以上.这表明  $Fe^{3+}$ 和  $Cu^{2+}$ 在树 脂表面上负载比较牢固,所制备的催化剂具有重复 使用的能力.



3.4 反应机理推断

1424

在橙黄 初始浓度: 0.4 mmol·L<sup>-1</sup>; H<sub>2</sub>O<sub>2</sub>初始 浓度: 15 mmol·L<sup>-1</sup>; 温度: 20 ;初始 pH: 3.6; DMPO浓度: 80 mmol·L<sup>-1</sup>的条件下,催化剂(Fe<sup>3+</sup> + Cu<sup>2+</sup>)/R和 Fe<sup>3+</sup>/R 催化过氧化氢降解橙黄 的 DMPO-OH·图谱如图 12所示.从图 12可以看出,在 相同的测试条件下,(Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R 催化分解过 氧化氢的能力强,其 OH·的信号明显强于 Fe<sup>3+</sup>/R, 这可能是由于 Cu<sup>2+</sup>强化了中间态络合物 Fe-OOH/ R的电子传递. Strlic等 (2003)也发现 Fe<sup>3+</sup>和 Cu<sup>2+</sup> 共存条件下中性类 Fenton反应被强化,这也说明 OH 是反应的主要活性物种.



图 12 不同催化剂催化降解橙黄 过程中 DM PO - OH 的 EPR图谱 (a Fe<sup>3+</sup>/R; h (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R) Fig 12 EPR spectra of DMPO-OH · for the degradation of Orange by different catalysts (a Fe<sup>3+</sup>/R; h (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R)

在 (Fe<sup>3+</sup> + Cu<sup>2+</sup>) /R 催化 H<sub>2</sub>O<sub>2</sub>氧化橙黄 的 过程中,测量了催化剂(Fe<sup>3+</sup>+Cu<sup>2+</sup>)/R在不同时 刻的 XPS光电子能谱,结果如图 13所示. 由图 13 可知,在反应前催化剂 Fe (2P<sub>3/2</sub>)区的键能为 712.75eV (曲线 a);反应 1 h后,其 Fe (2P32)区的 键能为 713.25 eV (曲线 b),这表明有高价态的铁 氧化合物生成,有可能是 Fe(N);反应结束时 4 h 后,其 Fe (2P32)区的键能为 711. 375 eV (曲线 c),这表明生成的高价铁又由于自身的氧化性而被 还原成低价铁. De Laat(1999)和 Gallard (1999)分 别报道了在均相类 Fenton反应中,首先生成 Fe-OOH 络合物;接下来 Fe-OOH 络合物发生分解. Ensing (2003)认为在配体作用下, Fe-OOH 络合物会发生 O—O键的均裂产生 Fe<sup>N</sup>=O和OH·. 所以,在图 13 中,XPS光电子能谱的变化也就反映了 Fe在反应过

程中其价态的变化,说明高价态铁在反应过程中同时存在,反应遵循 OH ·和高价态铁同时作用的机理.



图 13 催化剂(Fe<sup>3+</sup>+Cu<sup>2+</sup>)/R在降解橙黄 过程中 Fe(2P<sub>3/2</sub>)区 XPS图谱的变化 (a反应前; b反应 1h; c反应结束 4h)

Fig 13 XPS spectra of Fe  $(2P_{3/2})$  for the degradation of O range by the catalyst  $(Fe^{3+} + Cu^{2+})/R$  (a before reaction; b after 1 h of reaction; c end of reaction; 4 h)

4 结论 (Conclusions)

1)掺杂  $Cu^{2+}$ 的类  $Fenton((Fe^{3+} + Cu^{2+})/R/H_2O_2)$ 降解偶氮染料橙黄 时的降解效果优于普通 类  $Fenton 反 应 (Fe^{3+}/R/H_2O_2)$ . 制备  $(Fe^{3+} + Cu^{2+})/R$ 催化剂的最佳条件是:  $Cu^{2+}$ 与  $Fe^{3+}$ 的物质 的量比为 1 2,并且  $Cu^{2+}$ 与  $Fe^{3+}$ 同时负载时效果 最好.

2)催化剂 (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R 催化过氧化氢降解 橙黄 的体系中,过氧化氢的投加量存在最佳值, 在本实验条件下,过氧化氢的最佳加入量为 15 mmol·L<sup>-1</sup>.

3)随着 pH值升高,染料初始降解率下降,但一 定时间后降解率差别很小.在 pH值 3.1~10.7的 范围内,能有效地对橙黄 进行降解.

4)温度升高,反应速率加快,该反应符合假一级反应动力学方程,反应的活化能为 10.71 kJ·mol<sup>-1</sup>.

5)橙黄 初始浓度越高,反应速率越快,反应 速率常数与反应初始浓度具有很好的线性关系. 增 大催化剂的投量,可使反应速率加快.

6)催化剂重复使用后仍然具有较好的催化活性, 说明 Fe<sup>3+</sup>和 Cu<sup>2+</sup>在树脂表面负载比较牢固, 催

化剂具有反复使用的能力.

7) Cu<sup>2+</sup>的掺杂能有效地促进 OH ·的产生,在 (Fe<sup>3+</sup> +Cu<sup>2+</sup>)/R催化 H<sub>2</sub>O<sub>2</sub>降解橙黄 的反应过 程中,OH 和高价铁都是反应活性物种.

责任作者简介:马军(1962—),男,哈尔滨工业大学市政环 境工程学院教授、博士生导师,教育部长江学者奖励计划特 聘教授,国家级有突出贡献的中青年专家.研究方向为水的 深度处理. E-mail: majun @ hit edu cn; Tel: 0451 - 86282292

#### 参考文献 (References):

- Cheng M, MaW, Li J, et al 2004. Visible light assisted degradation of dye pollutants over Fe (III) Loaded Resin in the presence of H<sub>2</sub>O<sub>2</sub> at neutral pH values [J]. Environmental Science & Technology, 38: 1569–1575
- De Laa J, Gallard H. 1999. Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling [J]. Environmental Science & Technology, 33: 2726-2732
- Dhananjeyan M R, Kiwi J, Albers P, et al 2001. Photo-assisted immobilized Fenton degradation up to pH 8 of azo dye orange II mediated by Fe<sup>3+</sup> /Nafion/glassfibers [J]. Helvetica Chinica Acta, 84: 3433–3445
- Ensing B, Buda F, Baerends E J. 2003. Fenton-like chemistry in water. Oxidation catalysis by Fe (III) and H<sub>2</sub>O<sub>2</sub> [J]. The Journal of Physical Chemistry A, 107: 5722–5731
- Femandez J, Bandara J, Lopez A, et al 1999. Photoassisted Fenton degradation of nonbiodegradable Azo Dye (Orange II) in Fe-free solutions mediated by cation transfer membranes [J]. Langmuir, 15: 185–192
- 高冠道,陈金龙,费正皓,等. 2006. 超高交联树脂催化剂对水溶液 中孔雀绿的催化降解研究[J]. 高分子学报,(1):113—116

- Gao G D, Chen J L, Fei Z H, et al 2006. Degradation of malachite green in aqueous solutions with a novel catalyst of hypercrosslinked resin [J]. Acta Polymerica Sinica, 1: 113–116 (in Chinese)
- Gallard H, De Laat J, Legube B. 1999. Spectrophotometric study of the formation of iron (III)-hydroperoxy complexes in homogeneous aqueous solutions [J]. Water Research, 33 (13): 2929–2936
- Kiwi J, Denisov N, Gak Y, et al 2002 Catalytic Fe<sup>3+</sup> clusters and complexes in Nafion active in photo-Fenton processes Highresolution electron microscopy and femtosecond studies [J]. Langnuir, 18: 9054—9066
- Liou R M, Chen S H, Hung M Y, et al 2005. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution [J]. Chemosphere, 59: 117–125
- L üX, Xu Y, L üK, et al 2005. Photo-assisted degradation of anionic and cationic dyes over iron (III) -loaded resin in the presence of hydrogen peroxide [J]. Journal of Photochemistry and Photobiology (A: Chemistry), 173: 121-127
- Parra S, Nadiotechenko V, Albers P, et al 2004. Discoloration of Azo-Dyes at biocompatible pH-values through a Fe-Histidine complex immobilized on Nafion via Fenton-like processes [J]. The Journal of Physical Chemistry B, 108: 4439-4448
- Parra S, Henao L, Mielczarski E, et al 2004. Synthesis, testing, and characterization of a novel Nafion membrane with superior performance in photoassisted immobilized Fenton catalysis [J]. Langnuir, 20: 5621-5629
- StrlicM, KolarJ, Selih V S, et al 2003. A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH [J]. Acta Chimica Slovennica, 50: 619–632
- Tsuchida E 1991. Macromolecularmetal complexes: dynamic interactions and electronic processes [M]. New York: VCH, 123-129
- Walling C 1975. Fenton 's reagent revisited [J]. Account Chemistry Research, 8: 125–131