SBR 工艺系统中污泥的 TTC - ETS活性变化

谭学军¹, 尹 军^{1,2}, 王建辉¹, 王雪峰¹

(1. 吉林建筑工程学院 环境工程系,吉林 长春 130021;2 哈尔滨工业大学 市政环境工程学院,黑龙江 哈尔滨 150090)

摘 要: 通过检测 SBR工艺系统的 TTC - ETS活性,研究了污泥生物活性的变化规律和活性状况。试验结果表明:TTC - ETS活性可以有效地表征 SBR系统的生化反应进程;有机物降解、硝化和反硝化阶段的生物活性依次降低,运行条件并未明显影响到 SBR系统的 TTC - ETS活性变化规律,但影响到 TTC - ETS活性曲线上标志不同反应阶段的特征点出现时间和各阶段的平均生物活性; TTC - ETS活性与 DO、ORP和 pH值之间存在良好的相关关系。

关键词: SBR工艺; 活性污泥; TTC - ETS活性

中图分类号: X703.1 文献标识码: A 文章编号: 1000 - 4602 (2006) 01 - 0041 - 06

TTC-ETS Activity Change of Activated Sludge in SBR Process

TAN Xue-jun¹, YN Jun^{1,2}, WANG Jian-hui¹, WANG Xue-feng¹

(1. Department of Environmental Engineering, Jilin Architectural and Civil Engineering

Institute, Changchun 130021, China; 2 School of Municipal and Environmental Engineering,

Harbin Institute of Technology, Harbin 150090, China)

Abstract: Changing rule and activity status of biological activity of activated sludge in SBR process were studied by the determination of TTC-ETS activity. The results indicate that TTC-ETS activity can reflect effectively the biochemical reaction course of SBR process Biological activity of organic matter biologradation, nitrification and denitrification course in SBR process is reduced in order Operational conditions cannot influence the changing rule of TTC-ETS activity, but the time of the appearance of break points marking different reaction course in profile and the average biological activity are influenced. There is better correlation between TTC-ETS activity and DO, ORP and pH respectively in SBR process

Key words: SBR process; activated sludge; TTC-ETS activity

目前,人们对 SBR工艺的优缺点、去除污染物 的特性和效能已有较深入的研究与认识^[1,2],该工 艺的过程控制也随着电极技术和控制手段的发展而 取得了长足进步,但有关 SBR工艺过程中污泥生物 活性的研究尚无报道,现有文献只是在研究 SBR法 去除污染物的特性时,才对污泥的生物活性略做描 述,并未提供科学的试验数据。 在污泥的生物活性指标中,污泥电子传递体系 (ETS, Electron Transport System)活性是近年来备受 关注的指标。该指标既可从生物学角度反映处理系 统微生物降解有机物的能力,又可用生物活性的高 低衡量有机物的降解速率及生物处理设施的运行效 果。污泥 ETS活性是通过检测微生物呼吸链上电 子的传递速率来间接指示微生物的呼吸活性,进而

基金项目:国家高技术研究发展计划(863)项目(2004AA601020); 吉林省重大科技发展计划项目(20040405 - 1)

来定量活性污泥的生物活性^[3]。TTC是污泥 ETS 活性检测的最常用人工电子受体,它在微生物电子 传递体系的作用下能够接受电子而还原成 TF(Triphenyl Formazan),并发生明显的颜色变化。该方法 可同时检测的样品数量不受限制,操作简便,适于现 场应用,所需的仪器设备均是实验室常规仪器^[4]。

1 材料与方法

1.1 原水

原水以啤酒加适量自来水稀释配制,投加硫酸 铵和磷酸二氢钾作为氮源和磷源,投加碳酸氢钠调 节 pH值。

1.2 试验装置

试验装置如图 1所示。SBR反应器由有机玻璃 制成,高为 70 cm,直径为 30 cm,总有效容积为 40 L。采用鼓风曝气,以转子流量计调节曝气量;用温 控仪调控水温;用搅拌器保持非曝气状态下的泥水 混合;用 DO、ORP和 pH 传感器监测反应过程中 DO、ORP和 pH值的变化。

1.温度传感器 2.pH 传感器 3.DO 传感器 4.ORP 传感器
 5.微孔曝气器 6.温控仪 7.pH 测定仪 8.搅拌器 9.DO 测定仪
 10.ORP 测定仪 11.转子流量计 12.排水口 13.排泥管

图 1 试验装置示意图

Fig 1 Schematic diagram of SBR system

1.3 试验方案

试验分 3阶段进行,分别研究不同进水氨氮浓 度、有机物浓度和不同污泥浓度的 SBR工艺系统的 TIC - ETS活性变化规律和生物活性状况。系统的 曝气量均维持在 1.0 m³/h,运行温度控制在(25 ± 1) ,进水总磷含量一直保持在 6.0 mg/L 左右。 每种试验条件都运行一定的周期数,待系统进入稳 定状态后开始试验。

1.4 分析方法

1. 4. 1 TTC - ETS活性

向 10 mL离心管中加入 0.8 mL的污泥混合液、 0.36%的 Na₂SO₃溶液 0.5 mL和 0.4%的 TTC溶液 0.3 mL。迅速将制备好的样品放在(25 ±1) 的水 浴振荡器内振荡培养 30 min,然后加 1 mL、37%的 甲醛终止酶反应,以上操作均在暗处进行。将该样 品在 4 000 r/min下离心 5 min,轻轻弃去上清液,加 入 5 mL的丙酮,搅拌混合均匀后继续在(37 ±1) 下暗处振荡萃取 10 min。待样品萃取完毕,在 4 000 r/min下再离心 5 min,将上清液和沉淀污泥分离。 用分光光度计在 485 nm 处读取萃取液的吸光度。 离心的沉淀污泥在(105 ±1) 下烘干 1 h后测干 质量。TTC - ETS活性的计算公式如下:

$$U^{\mathrm{T}} = \frac{D_{485}V}{k_{\mathrm{T}}W t} \tag{1}$$

式中 U^{T} ——TIC - ETS活性,mgTF/(gTSS · h)

- k_T——标准曲线斜率
- V——萃取剂体积,mL

W——污泥干质量,g

t——培养时间,h

D485 ——波长 485 nm 处的上清液吸光度

1.4.2 其他常规分析指标

COD: 5B - 1型 COD 快速测定仪; NO₃ - N:麝 香草酚分光光度法; NO₂ - N:N - (1 - 萘基) - 乙二 胺光度法; NH⁺₄ - N:纳氏试剂分光光度法; MLSS: 滤纸法; DO: W TW inoLab Oxi level 2实验室台式溶 解氧仪; ORP和 pH: HANNA pH 211实验室台式酸 度计。

2 试验结果与分析

2.1 进水氨氮浓度与 TTC - ETS活性变化

2 1.1 TTC - ETS活性变化规律

在污泥浓度为 5 000 mg/L、进水 COD 为 300 mg/L左右的条件下,研究了不同进水氨氮浓度下的 TTC - ETS 活性变化。在进水氨氮浓度分别为 14.5、42 0 mg/L时, SBR工艺系统的 TTC - ETS活性、COD和"三氮 在一个反应周期内的变化规律见 图 2。在有机物降解阶段,两种试验条件下的 TTC - ETS活性均随反应时间的延长而逐渐降低,并在 COD去除完毕时(反应的第 30 min)出现凹点,该特 征点正是异养菌去除 COD完毕及自养菌即将进行 硝化反应的标志,此点前测出的主要是好氧异养菌 的 TTC - ETS活性,而此点后测出的主要是硝化自 养菌的 TTC - ETS活性,而此点后测出的主要是硝化自 养菌的 TTC - ETS活性;在硝化反应阶段,TTC - ETS活性在反应的第 40 min均先出现了一次跃升, 然后随着反应的继续逐渐降低,并在硝化反应结束

时趋于平稳。由于两种试验条件下的进水氨氮浓度 不同,硝化反应持续的时间不同,TTC-ETS活性的 平台期出现时间也会受到影响:进水氨氮浓度为 14.5 mg/L和 42.0 mg/L的硝化反应分别在第 90 min和第 240 min结束, TTC - ETS活性也分别在此 时刻出现平台期:在反硝化阶段.TTC-ETS活性开 始是缓慢上升,然后突然下降,尔后趋于稳定。在两 种进水氨氮浓度试验中,由于硝化反应结束时生成 的硝态氮数量不同,反硝化反应持续的时间不同, TIC - ETS活性的转折点出现时间亦不同。对于 14.5 mg/L的进水氨氮浓度来说,微生物同化作用 消耗掉较多的氨氮,致使硝化反应结束时仅生成了 3.5 mg/L的硝态氮,这部分硝态氮在反硝化过程中 很快就转化为氮气,所需的时间不到 20 min,而 TIC - ETS活性也仅仅上升了一次,就开始下降并趋于 稳定;对于 42.0 mg/L的进水氨氮浓度而言,硝化反 应结束时生成了 33.0 mg/L的硝态氮,这些硝态氮 在第 450 min反硝化完全.而 TTC - ETS活性也在此 时才开始下降并趋于稳定。

图 2 不同进水氨氮浓度下的 TTC - ETS活性、 COD、氨氮、硝酸氮和亚硝酸氮变化规律

Fig 2 Profile of TTC-ETS activity, COD, ammonia, nitrate and nitrite in different influent ammonia concentrations 上述试验结果一方面说明, SBR工艺过程中的

2

TIC - ETS活性遵循一定的变化规律;另一方面说 明,TTC - ETS活性可以及时、有效地指示出 SBR工 艺系统中的生化反应进程,即通过检测 SBR工艺的 TIC - ETS活性可间接了解系统内的污染物降解情 况。

2 1. 2 TTC - ETS活性数值

表 1比较了不同进水氨氮浓度试验中有机物降 解、硝化和反硝化过程的平均 TTC - ETS活性。在 好氧体系里, TTC - ETS活性还可以 $m_{gO_2} / (gTSS \cdot$ h)为单位来表示,这是因为:在电子传递过程中,将 0.5 mol的 O₂转化成 1.0 mol的水分子需要 2 mol 的电子,而将 1.0 mol的 TTC转化成 TF同样需要 2 mol的电子,因此,1.0 mol的 TF(300 310 mg)与 0.5 mol的 O₂ (16 000 mg)相当。式 (1)与相应的因子相 乘,可以得到:

$$U^{\rm T} = \frac{0.053D_{485}V}{k_{\rm T}W t}$$
(2)

式中 U^T ——TTC - ETS活性,mgO₂ / (gTSS · h) 表 1还给出了以 mgO₂ / (gTSS · h)为单位表达 的有机物降解和硝化阶段的 TTC - ETS活性。

表 1 不同进水氨氮浓度下的平均 TTC - ETS活性

Tab 1 Average TTC-ETS activity in different influent

ammonia concentrations

进水氨氮 浓度 / (mg · L ⁻¹)	TTC - ETS活性 / (mgTF · g ⁻¹ TSS · h ⁻¹)			TTC - ETS活性 / $(mgO_2 \cdot g^{-1}TSS \cdot h^{-1})$	
	有机物 降解	硝化	反硝化	有机物 降解	硝化
14. 5	32, 19	20. 68	10. 73	1.71	1. 10
42.0	31. 95	19. 78	13. 04	1. 69	1. 05

从表 1可以看出, SBR工艺过程的有机物降解、 硝化和反硝化阶段的生物活性依次降低。此外,进 水氨氮浓度基本未影响到有机物降解和硝化阶段的 平均 TTC - ETS活性,而反硝化阶段平均 TTC - ETS 活性却受到影响,其原因是:进水氨氮浓度越高,好 氧阶段结束时生成的硝态氮数量越多,反硝化时间 也越长, TTC - ETS活性随反硝化的进行而增加得 越多。

2 2 进水有机物浓度与 TTC - ETS活性变化

2 2 1 TTC - ETS活性变化规律

污泥浓度为 4 200 mg/L、进水氨氮浓度为 14.0 mg/L左右的条件下,研究了不同进水氨氮浓度下的 TTC - ETS 活性变化。在不同进水有机物浓度 (293、685 mg/L)的 SBR工艺系统中,TTC - ETS活

性、COD和"三氮 在一个反应周期内的变化规律见 图 3。

图 3 不同进水有机物浓度下的 TTC - ETS活性、 COD、氨氮、硝酸氮和亚硝酸氮变化规律

Fig 3 Profiles of TTC-ETS activity, COD, ammonia, nitrate and nitrite in different influent COD concentrations

从图 3可以看出,去除 COD阶段的 TTC - ETS 活性变化规律与前述试验基本相同,但由于进水有 机物浓度不同,COD 去除完毕所需的时间不同,从 而导致相应的 TTC - ETS活性变化曲线上,标志 COD 去除完毕的特征点出现时间也不同。当进水 COD 为 293 mg/L时,有机物在第 30 min接近难降 解阶段,此时 TTC - ETS活性曲线出现凹点;当进水 COD 为 685 mg/L时,系统的 COD在第 60 min去除 完毕,此时有机物降解阶段的 TTC - ETS活性最低。 至于 TTC - ETS曲线为什么没有出现凹点(TTC -ETS活性曲线上未体现出硝化作用开始时的上升现 象),这是由此时刻的取样时间间隔较长所致。该 试验结果表明,TTC - ETS活性可及时地指示出进 水有机物浓度对 SBR系统有机物降解过程的影响。

在污水生物处理系统中,进水有机物浓度越高 (COD的去除量大),氨氮的同化量越多,相应的硝 化反应持续时间亦越短。图 3中硝化阶段的 TTC -ETS活性变化规律与前述的试验现象均相同,但由 于硝化反应开始时间和硝化量不同,TTC - ETS活

2

性曲线上表征硝化反应开始的特征点出现时间和硝 化阶段变化规律的持续时间不同。当进水 COD为 293 mg/L时, TTC - ETS活性曲线分别在第 30 min 和第 120 min出现了表征硝化反应开始和结束的特 征点,持续时间为 90 min;当进水 COD为 685 mg/L 时,硝化阶段持续时间为 60 min, TTC - ETS活性曲 线上标志硝化反应结束的特征点出现时间为第 120 min。

在反硝化阶段,两种试验条件下的 TTC - ETS 活性表现出不同的变化规律,与"三氮 的转化相比 较可以发现,这种不同的变化规律是源于曝气结束 时生成的硝态氮数量不同。当好氧阶段结束时,进 水 COD为 293 mg/L的处理系统生成了总量近 5.0 mg/L的硝态氮,这些硝态氮在反硝化开始的 20 min 内全部转化成氮气,TTC - ETS活性也在反硝化的 第 10 min先上升,然后降低并趋于稳定;进水 COD 为 685 mg/L 的处理系统生成的硝态氮仅为 0.5 mg/L左右,此时的硝态氮在反硝化开始即迅速完全 转化为氮气,TTC - ETS活性也未出现明显上升现 象,而是基本维持恒定。

2 2 2 TTC - ETS活性数值

表 2比较了不同进水有机物浓度时有机物降解 和硝化过程的平均 TTC - ETS活性。由于进水 COD 为 685 mg/L的处理系统反硝化过程持续时间太短, 因此无法对二者反硝化阶段的 TTC - ETS活性进行 比较。

表 2 不同进水有机物浓度下的平均 TTC - ETS活性

Tab 2 Average TTC-ETS activity in different influent COD concentrations

进水 COD/ (mg·L ⁻¹)	$TTC - E$ $(mgTF \cdot g^{-1})$	TS活性 / ¹ TSS・h ⁻¹)	TTC - ETS活性 / $(mgO_2 \cdot g^{-1}TSS \cdot h^{-1})$						
	有机物 降解	硝化	有机物 降解	硝化					
293	31. 99	18.45	1. 7	0. 98					
685	43.04	17.61	2. 28	0. 93					

从表 2可见,提高 SBR处理系统的进水有机物 浓度,可在一定程度上提高去除 COD 过程的平均 TTC - ETS活性,但对氨氮硝化阶段的平均 TTC -ETS活性却无明显影响。

2 3 污泥浓度与 TTC - ETS活性变化

2 3.1 TTC - ETS活性变化规律

维持进水 COD和氨氮浓度分别为 300 mg/L和 40 mg/L左右,在不同污泥浓度(4 223,6 572 mg/L)

的 SBR系统中, TTC - ETS活性、COD和"三氮 在 一个反应周期内的变化规律见图 4。

图 4 不同污泥浓度下的 TTC - ETS活性、COD、氨氮、 硝酸氮和亚硝酸氮变化规律

Fig 4 Profiles of TTC-ETS activity, COD, ammonia, nitrate and nitrite in different influent MLSS concentrations

由图 4可知,两种污泥浓度条件下的 TTC -ETS活性变化规律完全相同,其差异只是由于污泥 浓度不同,污染物的去除速率不同,所以在 TTC -ETS活性曲线上,表征相应反应过程的特征点出现 时间也不同。在两种试验条件下,有机物降解过程 均在第 30 min完成, TTC - ETS活性也都在此处出 现凹点。当污泥浓度为 4 223 mg/L 时,硝化反应是 在第 300 min结束, TTC - ETS活性也在此时开始稳 定;而当污泥浓度为 6 572 mg/L时,硝化反应结束 时间为第 180 min, TTC - ETS活性曲线上表征硝化 反应结束的特征点出现时间也在此时。在反硝化阶 段,污泥浓度为 4 223 mg/L的试验系统的 TTC -ETS活性一直上升,第 420 min后开始下降,并逐渐 平稳;而污泥浓度为 6 572 mg/L的试验系统 TTC -ETS活性也一直上升,但在第 410 min后下降并趋 于平稳。

2 3.2 TTC - ETS活性数值

7

不同污泥浓度试验中有机物降解、硝化和反硝

化过程的平均 TTC - ETS活性比较见表 3。

表 3 不同污泥浓度下的平均 TTC - ETS活性

Tab 3 Average TTC-ETS activity in different

MLSS concentrations

$\frac{MLSS}{(mg \cdot L^{-1})}$	TTC - ETS活性 / (mgTF · g ⁻¹ TSS · h ⁻¹)			TTC - ETS活性 / $(mgO_2 \cdot g^{-1}TSS \cdot h^{-1})$	
	有机物 降解	硝化	反硝化	有机物 降解	硝化
4 223	33. 13	16.33	14. 24	1. 76	0.87
6 572	34.83	20. 59	15. 23	1. 85	1. 09

从表 3可见,提高 SBR处理系统的污泥浓度, 可在一定程度上提高 (去除 COD、硝化和反硝化过 程的)平均 TTC - ETS活性。

2 4 TTC - ETS活性与DO、ORP和 pH 值的关系

DO、ORP和 pH值是 SBR工艺的重要过程控制 参数^[5]。 SBR工艺过程中 TTC - ETS活性与 DO、 ORP和 pH值之间的相关关系试验结果见图 5(以 氨氮浓度为 42.0 mg/L为例说明)。

图 5 TTC - ETS活性与 DO、ORP和 pH值之间的关系 Fig 5 Relationships between TTC-ETS activity and DO, ORP and pH respectively

从图 5可见,SBR工艺过程中 DO、ORP和 pH 值的变化规律与文献报道的结果完全一致,且在 SBR系统完成每一生化反应过程时,DO、ORP和 pH 值曲线都会有相应的特征点出现^[6]。将 TTC - ETS 活性与 DO、ORP和 pH 值变化曲线相对比可以发 现,TTC - ETS活性曲线上标志有机物降解过程结 束、氨氮硝化反应开始和结束、反硝化过程开始和结 束等现象的特征点出现时间,与 DO、ORP和 pH 值 曲线上标志上述现象的特征点出现时间基本相符。 该试验结果说明,SBR 工艺过程中 TTC - ETS活性 与 DO、ORP和 pH 值之间存在良好的相关关系。

3 结论

TTC - ETS活性可以及时、有效地指示出 (下转第 49页) 反硝化菌 ,当 NH₄⁺ - N 含量较高时 ,好氧条件下的 硝化反应和厌氧条件下的还原反应均明显存在。

受河流水系中 DO和碳源有机物的影响, 浮游微生物的反硝化能力较差,导致水体中出现了 不同程度的 NO³ - N 积累。另外,由于底泥与河水 的接触面小,受传质等因素的影响,底泥微生物的反 硝化作用对水体氮的净化影响较小,故反硝化过程 成为河流氮净化的限制因素。

对于 DO 充足的水体, NO₃ - N 浓度远大 于 NO₂ - N、NH⁺₄ - N 的浓度,因此 NO₃ - N、NO₂ - N、NH⁺₄ - N 的浓度顺序成为继 DO 后判断河流水 质好坏的又一指标。且通过监测河流下流过程中氮 形态的变化可间接获得水体中硝化和反硝化菌的组 成情况。 河流水系浮游微生物对磷基本无去除效

```
果。
```

参考文献:

- [1] Fusheng Li, Akira Yuasa, Yuzo Muraki, et al Impacts of a heavy storm of rain upon dissolved and particulate organic C, N and P in the main river of a vegetation-roch basin area in Japan [J]. Science of the Total Environment, 2005, 345: 99 - 113.
- [2] 王亚娥,李富生,汤浅晶,等. 浮游微生物对环境荷尔 蒙的分解特性 [J].中国给水排水,2005,21(9):5-9.

电话: (0931) 4939255 4938027 E - mail:wye@mail lzjtu cn 收稿日期: 2005 - 09 - 28

(上接第 45页)

SBR工艺系统的生化反应进程。在有机物降解阶段,TTC-ETS活性随COD的去除而不断降低,当COD去除完毕时TTC-ETS活性曲线出现凹点。在硝化反应阶段,TTC-ETS活性先出现一次上升,然后逐渐降低,并在硝化反应结束时出现平台期。在反硝化阶段,TTC-ETS活性先随反硝化的进行而上升,当反硝化结束时TTC-ETS活性转而下降,并趋于稳定。

SBR工艺过程的有机物降解、硝化和反硝化阶段的生物活性依次降低。

运行条件对 SBR 系统的 TTC - ETS活性 变化规律未带来明显影响,但曲线上标志不同反应 阶段的特征点出现时间以及各阶段的平均生物活性 数值却出现变化。

SBR工艺过程中 TTC - ETS活性与 DO、 ORP和 pH值之间存在良好的相关关系。

参考文献:

 [1] 曾薇,彭永臻,王淑莹,等.以溶解氧浓度作为 SBR法 模糊控制参数 [J].中国给水排水,2000,16(4):5-10.

- [2] 高大文,彭永臻,王淑莹. SBR法处理豆制品废水过程
 中 ORP与 COD的相关性 [J].给水排水,2002,28(9):
 40 43.
- [3] Blenkinsopp SA, Lock MA. The measurement of electron transport system activity in river biofilms [J]. Wat Res, 1990, 24(4): 441 445.
- [4] 尹军,谭学军,任南琪.用 TTC与 NT电子传递体系活 性表征重金属对污泥活性的影响 [J].环境科学, 2005,26(1):56-62
- [5] Akin B S, Ugurlu A. Monitoring and control of biological nutrient removal in a sequencing batch reactor [J].
 Process Biochemistry, 2005, 10: 2873 - 2878.
- [6] Peng Y Z, Gao J F, Wang S Y, et al Using pH and ORP as fuzzy control parameters of denitrification in SBR process [J]. Wat Sci Tec, 2002, 46 (4 - 5): 131 -137.

作者简介:谭学军(1976 -), 男, 吉林舒兰人,
博士, 研究方向为水污染控制理论与技术。
电话: (0431) 5935277
E - mail: frankytan@163. com
收稿日期: 2005 - 08 - 08