®工业给排水®

高浓度吐氏酸废液综合处理工程实例,

李中和 杨志华 祝万鹏 余 刚

提要 利用 N_{235} -煤油- H_2SO_4 -NaOH 化学萃取-反萃取体系和化学氧化法处理高浓度吐氏酸 (2-aminornaphthalene sulfonic acid) 废液 ,建成处理能力为 $67\,\mathrm{m}^3$ / d 的废液资源回收-综合处理装置。运行结果表明 ,废液经萃取后 COD_{Cr} 由 15 $000\,\mathrm{mg/L}$ ~ 20 $000\,\mathrm{mg/L}$ 降低到 $721\,\mathrm{mg/L}$ ~ 1 $503\,\mathrm{mg/L}$ 。回收的浓缩液中主要成分为吐氏酸与羟基吐氏酸 ,可直接回用到生产工艺中 ,提高产品回收率约 10% ,取得显著的环境与经济效益。

关键词 染料中间体 吐氏酸废液 萃取 工艺设计

本工程以典型的萘系染料中间体吐氏酸废水为处理对象,采用 N₂₃₅-煤油-H₂SO₄-NaOH 化学萃取-反萃取体系和 Fenton 试剂化学氧化法处理工艺,实施资源回收综合处理工程,1995 年 9 月建成并试车成功。两年来,运行结果基本达到设计要求,取得了较好的效果。

1 工程概况

1.1 企业概况

生产企业为山东省某国营化工厂,吐氏酸生产系统为该厂新建项目,设计生产能力为 2 000t/a,近期产量为 1 000t/a,每吨产品产生酸析废母液约 10m³。废水资源化-综合处理系统为"三同时"工程,与生产装置同年建成并试车成功,正常运行至今。

1.2 设计参数与设计标准

1.2.1 设计参数

设计规模: $67m^3/d$; 废水水质: $COD_{Cr}=15\,000$ $mg/L\sim20\,000mg/L$; $pH=0.5\sim1.0$; 萃取相比 $O/A:1~3\sim1~4$; 反应时间: 10min; 两相分离时间: 30min; 反应温度: >18~ ; 反萃取相比 $O/A:3~1\sim4~$ 1; 反萃取反应时间: 10min; 两相分离时间: 40min; 反应温度: >20~ ; 化学氧化处理药剂投加量: $Fe^{2+}100mg/L$, $H_2O_2(25~\%)$: 4g/L; 反应时间: 4h; 石灰中和: $pH=7\sim8$; 沉淀时间: 2h。

1.2.2 处理标准

萃取效率(以 COD_{Cr}计) > 90 %;提取浓缩液:浓缩倍数 8 ~ 10 倍, 其中 COD_{Cr}浓度 > 100g/L ~

150g/L(1kgCOD_{Cr}相当 0.6kg 吐氏酸);排放要求: COD_{Cr} < 200mg/L,pH = 6~9。

2 工艺流程与主要工艺设备

2.1 工艺流程

本工程分为两段,即资源回收段与萃余液化学 氧化处理段。

2.1.1 萃取-反萃取工艺流程

实施资源回收的萃取-反萃取工艺流程如图 1 所示。本工艺体现了以下特点:

- (1)全系统实现连续操作,运行过程以自动为主。
- (2)萃取以二级连续逆流操作,反萃取为一级,形成一体化设备。
 - (3)操作方便,占地面积小。

2.1.2 萃余液化学氧化工艺流程

工艺流程如图 2 所示。在设计中考虑了萃余液 夹带萃取剂的分离回收装置。

2.2 主要工艺设备

2.2.1 连续型萃取-反萃取一体化反应器

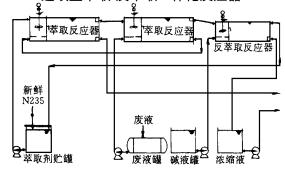


图 1 回收工段工艺流程

^{*}该工程被国家环保总局授予"八五"优秀示范工程。

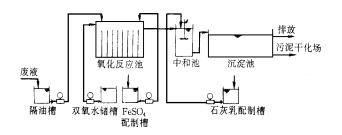


图 2 萃余液化学氧化工艺流程

萃取-反萃取槽设计为一体化反应器,其中萃取槽为两相连续逆流方式运行。混合反应室有效容积为 0.62m³,两相分离室有效容积为 1.865m³。搅拌桨采用四叶平直桨,直径为 270mm,桨叶高 68mm,转速 180r/min~200r/min。反萃取槽为一级,混合反应室有效容积为 0.27m³,两相分离室有效容积为 0.81m³,搅拌桨采用四叶直桨,桨叶直径为 220mm,桨叶高为 55mm,转速 200r/min~220r/min。由 3 套无级调速电机驱动 3 组搅拌装置。

2.2.2 废液贮存调节设备

由旧设备改造成两组各 10m³ 的废液贮存调节槽,配备输液泵 2 台,向高位槽输送。

2.2.3 高位槽输液设备

包括废液高位槽、萃取剂高位槽与反萃取剂高位槽,有效容积分别为 2.6m³、0.8m³、0.28m³,均配有液位自动控制器,控制输液泵的启闭。

2.2.4 萃余液化学氧化处理系统

包括隔油池、氧化反应槽与中和沉淀槽。隔油 池规格为长 \times 宽 \times 高 = 2m \times 4m \times 1.5m,地下式氧 化反应槽 1 座,停留时间为 9h,平面尺寸 1.6m \times 3.4m,有效水深 1.6m,设聚氯乙烯折流板。中和沉 淀槽 2 座,槽宽 2m,长 6m。

3 生产运行情况

该厂吐氏酸废水综合处理装置资源化工段于 1995年9月开始调试运行,很快投入正常运行,处 理能力达到了设计要求。

3.1 运行工艺条件

萃取原液 pH 通过加酸、加碱控制在 $0.7 \sim 1.3$ 之间,萃取相比为 (O/A) 为 $1.3 \sim 1.4$,萃取反应时间 10min,反应温度为常温。

反萃取工艺条件为:萃取剂浓度 20%~24%, 反萃取相比(O/A)41~31,反应时间 10min,反应 温度 20~45。冬季配置反萃取剂时需用低压 蒸汽加热清水后再配置。

3.2 运行情况

萃取-反萃取过程为联动系统,启动和运行过程有一定的难度,特别是调节维持两相界面的稳定性。原因可能有二:一是高位槽比设计标高低 0.5 m,造成压头不稳;二是调节流量的阀门没有采购到 ABS截止阀,实际安装上的是球阀,调节流量难度很大。

3.3 处理效果

开车后对进出水 COD_{Cr}进行了监测,各批水样处理效果见表 1。

	表1 1	区 行 双 集	<u> </u>
水样号	原水 COD _{Cr} / mg/ L	出水 COD _{Cr} / mg/ L	处理效率/ %
1 #	14 500	1 370	91
2 #	16 100	1 430	91
3 #	14 760	721	95.1
4 #	16 510	843	94.9
5 #	16 100	1 203	92.5
6#	14 600	1 503	92.5
7 #	16 900	1 420	91.6

从表 1 可见,该厂吐氏酸废液 COD_{Cr} 在 14 $500 mg/L \sim 16 900 mg/L$ 之间,萃余液 COD_{Cr} 只剩下 $721 mg/L \sim 1 503 mg/L$,处理效率在 $91\% \sim 95.1\%$ 之间,达到了设计要求。

4 问题讨论

4.1 酸析

我国的吐氏酸生产线均采用 2-萘酚法,在最后的酸析工段中可用盐酸和硫酸酸析。在试验研究中使用的废水是由另一吐氏酸厂提供的,该种废水是用硫酸酸析后的滤液,萃余液经化学氧化可以使COD_{Cr}降至 200mg/L 以下。该厂采用盐酸酸析,萃取效果有所下降,萃余液不能有效地控制在1 000mg/L以下,最严重的是 CI⁻给后续的催化氧化带来负面影响,导致 COD_{Cr}难以降到 200mg/L 以下。为此,在工程运行一年后,正在进行盐酸酸化后废水的深入研究。

4.2 萃取法处理高浓度染料或染料中间体废水的 可能性

用 N₂₃₅-煤油- H₂SO₄-NaOH 萃取-反萃取体系处理染料中间体废水是" 八五 "攻关期间取得的试验成果。该工程是此项技术的第一次实际工程应用,实

超滤膜在制酒原水制备中的应用

薛 罡 赵洪宾 魏希柱 李向红

提要 超滤膜可去除溶液中的大分子、胶体、蛋白质、微粒等,具有使用压力低、产水量大、便于 操作的特点。通过测试中空纤维超滤膜装置深度净化制酒原水的处理效果,证明超滤膜净水装置能 有效地消除水在管网中的二次污染,进一步提高水质。

关键词 超滤膜 制酒原水 深度净化

本研究将中型超滤膜组件应用于微型啤酒生产 车间,通过检测膜装置的处理性能,表明采用超滤膜 深度净化制酒原水,能够有效地降低水中多种污染 物浓度,消除管网造成的二次污染,完全可以满足制 酒工艺所需优质原水的要求。同时,膜装置与原有 废弃设备相比,具有占地面积小,节省人力、电耗及 操作简便等优点。

1 制备制酒原水膜处理方案的提出

1.1 生产车间原有砂滤工艺运行情况

安装膜处理装置之前,该微型啤酒公司曾采用 直径为 1m 的金属砂滤罐对管网终端出水进行深度 净化。但运行时出现如下问题:

- (1) 因只采用简易砂滤工艺,出水未经消毒,细 菌含量超标。
- (2) 反冲洗耗水量较大,在一定程度上增加了制 洒成本。
- (3) 随着运行时间的加长,金属罐产生了较严重 的腐蚀现象,出水中铁、细菌含量严重超标。砂滤罐 不仅没有起到净化作用,反而成了污染源。
- (4) 金属砂滤罐直径、重量较大,占地面积大,不 便干检修。

上述运行中出现的问题说明,简易过滤装置不

能有效地改善制酒原水水质。

1.2 原水水质

原水取自啤酒生产车间供水管道中,水质分析 结果如表1所示。

表1 原 水 水 质

指标编号	水质指标	含量	备注	
1	色度	25 度	超标	
2	浊度	3 度		
3	pН	6. 54		
4	总硬度	67. 07mg/L		
5	铜	2. 0µg/ L		
6	锌	0. 05 mg/ L		
7	铁	1. 0mg/ L	超标	
8	锰	40µg/ L		
9	高锰酸钾指数	1. 64mg/ L		
10	硝酸盐	2. 88mg/ L		
11	大肠菌群	1 ↑ /L		
12	细菌总数	170 ^ / mL ~ 180 ^ / mL	超标	
13	臭和味	无异味		
14	肉眼可见物	无		
15	油	未检出		

由水质分析结果看出,原水色度及细菌、铁等含 量明显超标,表明原水在管网中受到了二次污染。 但微型啤酒制酒工艺要求有优质原水,若直接用该

际生产效果接近试验结果,证明该技术用于处理带 磺酸基团的染料废水是切实可行的。回收的浓缩液 直接回用到生产工艺中,提高产品回收率约10%。

4.3 推广应用的可能性

阴离子缔合型化学萃取体系对高浓度萘系磺酸 染料中间体废液中含有的中间体物质,具有广谱性 提取分离效果,提取率高达90%~95%,回收物可 返回生产系统回收产品,因此可在类似的J酸、H 酸、醒红酸、DSD 酸等染料中间体废水处理中加以 应用。

△作者通讯处:100084 清华大学环境科学与工程系

电话:(010)62784527(O) 62787379(H)

收稿日期:1999-4-13

给水排水 Vol. 25 No. 12 1999