高浓度分散蓝染料废水的湿式氧化研究

曾新平¹ 唐文伟² 赵建夫³ 顾国维³

(1.同济大学生命科学与技术学院,上海 200092;2.同济大学化学系,上海 200092;3.同济大学污染控制与资源化研究国家重点实验室,上海 200092)

摘要 在 2 L 高压间歇反应釜中,研究了湿式氧化对高浓度分散蓝染料废水处理的效果、反应温度的影响和动力学特征。研究表明:温度是分散蓝染料废水湿式氧化的关键影响因素,升温有利于氧化效果的提高;进水 COD_{Cr}46 710 mg/L 在 255 、1.25 倍 理论供氧量下反应 2 h,COD_{Cr}去除率达 72.1%,可生化性显著提高,色度完全被去除。建立了三参数通用动力学模型,合理解释了 湿式氧化过程。

关键词 分散蓝染料废水 湿式氧化 CODcr 动力学模型

染料种类有硫化、分散、酸性、碱性、中性、直接、 还原、活性和阳离子等十多类,品种达500多种。染 料废水一般含有苯系、萘系、蒽醌系、卤化物、硝基 物、苯胺和酚类等有机物,有机物浓度和色度高、难 降解物质多。一般采用二级生化加物化后处理工 艺,但对难降解有机物处理效果较差。本文的染料 废水取自江苏某化工厂,该厂生产分散兰60[#]染料, 属蒽醌型分散染料,是以蒽醌酸酐与二甲基甲酰胺、 甲基丙胺在乙醇溶剂中缩合而成,回收溶剂后排放 的废水中含有大量蒽醌系、乙醇等原料和中间体,有 机物浓度高,可生化性差,属于典型高浓度难降解有 机废水,目前缺乏经济有效的处理技术。

湿式氧化(Wet Air Oxidation, WAO)是在较高温度(125~350)和压力(0.5~20 MPa)下,以空气或纯氧为氧化剂,将液相中有机物氧化分解成无机物或小分子有机物的方法。与常规方法相比,湿式氧化具有适用有机物浓度高、处理效率高、二次污染低、反应速度快、可回收能量及物质等特点^[1],因而受到环境界的广泛重视。第一个WAO专利是Strehlenert于1911年提出,20世纪60年代以后,WAO在回收纸浆化学品、污水厂污泥氧化和活性炭再生等得到了应用^[2],从20世纪70年代至今,WAO的研究和应用范围迅速扩展到有毒有害废水及废物的处理,尤其在处理含酚、氰、腈等有毒有害物质方面有大量的文献报导,研究内容从适用性深入到反应机理及动力学^[3~5]。

本文研究了分散蓝染料废水湿式氧化的处理效 果和动力学特征,为工程应用提供理论依据和技术 指导。

1 实验装置、方法与实验水质

1.1 实验装置

实验装置如图 1 所示。反应釜为 FYX-2a 型永 磁旋转搅拌高压釜(2 L),由容器、搅拌装置、加热 炉、冷却系统和控制系统等组成。

反应釜由直流调速电机带动磁力耦合器进行搅 拌,并由控制器调节转速。反应温度由加热炉通过 智能控制器控制(±2)。

图 1 湿式氧化实验装置示意图

1.2 实验方法

采用间歇湿式氧化,氧化剂为氧气。试验时首 先加入400 mL 水样,密封反应釜,充入定量氧气后 加热,达到预设温度时开启搅拌并维持在500 r/min,在预定时刻从冷凝器取样分析。

1.3 水质分析方法

COD_{cr}采用重铬酸钾法; TOC 采用 TOC 分析 仪测定; p H 采用精密数显酸度计测定。

1.4 废水水质

分散蓝染料废水水质指标见表1。

表1 废水水质分析

项目	pН	$\begin{array}{c} COD_{Cr} \\ / \ (mg \ \cdot L^{-1}) \end{array}$	TOC / (mg ·L ^{- 1})	BOD ₅ / COD _{Cr}	TOC/ COD _{Cr}
指标	11.07	46 710	12 640	0.150	0.277

第一作者:曾新平,女,1969年生,在读博士生,从事水处理技术教学及其研究开发工作。已发表论文30余篇。

· 88 ·

2 实验结果与讨论

温度对湿式氧化的影响 2.1

在供氧 $PO_2 = 1.25 PO_2^*$ (理论供氧)下考察了 温度对 WAO 的影响(图 2~4)。

结果表明: 温度对有机物氧化的影响非常显 著,CODcr和 TOC 去除率随温度升高明显提高; 前 20 min 反应速度快,呈自由基反应特征,此后反 应速度有不同程度减缓; CODcr 去除率均高于 TOC 去除率, TOC 氧化有滞后。

不同温度出水 pH~时间关系

图 4 显示了 WAO 中间产物有机酸与原水中碱 性物质的消长规律:低温下,有机物氧化成 CO2速度 和氧化成有机酸的速度以及有机酸氧化成 CO₂的速 度均较慢,但产酸速度快于酸氧化速度,有机酸积累 和碱性有机物的氧化使 pH 下降;温度升高,有机物 氧化速度加快,因此在 220 下,pH 下降较陡;240

时反应初期酸碱物质即接近消长平衡. 和 255 反应后期总有机物浓度降低,产酸速度下降,最终出 水的pH有所回升。

2.2 湿式氧化出水水质与可生化性变化 废水湿式氧化出水水质如表 2 所示。 表 2 湿式氧化出水水质(Po, = 1.25Po, *、2 h)

反应温度	180	200	220	240	255
$COD_{Cr}/(mg \cdot L^{-1})$	28 820	23 790	22 300	16 370	13 030
COD _{Cr} 去除率/%	38.3	49.1	52.3	65.0	72.1
TOC/ (mg $\cdot L^{-1}$)	9 647	8 279	7 642	6 280	5 334
TOC 去除率/%	23.7	34.5	39.5	50.3	57.8
BOD ₅ / (mg ·L ⁻¹)	14 030	13 200	13 060	10 700	9 010
BOD ₅ / COD _{Cr}	0.487	0.555	0.586	0.654	0.691

结果表明:湿式氧化后,B/C比显著提高,且温 度越高,提高幅度越大,最高 B/C达 0.691,可生化 性得到显著改善,这是因为废水中大分子或难降解 有机物大多氧化成 CO2 或小分子易生化有机物;此 外,出水呈无色透明,脱色效果非常显著(色度从5 万倍降到 50 倍以下)。可生化性提高和色度的去除 均为后续生化处理提供了极为有利的条件。

2.3 湿式氧化动力学特征

动力学研究有助于揭示反应历程,了解反应机 理及限速步骤,为工程设计提供指导并预测反应结 果。通用动力学模型^[6](图 5 和公式 1)以三个动力 学参数关联了宏观有机物氧化和中间产物有机酸变 化,较好地揭示了一般有机物湿式氧化规律。

图 5 通用动力学模型图示

[A + B] $e^{-k_3t} +$ k3 $+ k_2$ - k3 $[A + B]_{0}$ $k_1 + k_2$ -(1)

式中,A为初始有机物和不稳定的中间产物(以 COD_{cr}或 TOC 表示).B 为低级有机酸(以 COD_{cr}或 TOC 表示), C 为氧化最终产物, 如 CO2, 式中下标 0 表示初始值,且假定 $[B]_0 = 0$ 。

基于图 2、3 实验结果,采用通用动力学模型拟 合实验数据,按Levenberg-Marquardt (Microcal origin 程序)非线性求解计算 k_1 、 k_2 、 k_3 列入表 3。

 k_1 、 k_3 随温度升高显著增大, k_2 随 表3表明: 温度变化较小、表明升温有利于有机物直接氧化成 终产物和中间产物氧化成 CO₂: 歧点值 k_2/k_1 表 征反应途径的选择性,该值越大,表明反应偏向于生 成中间产物方向,反之则偏向于直接生成 CO2方向, k2/k1 随温度升高明显减小,可见低温下反应偏向于 生成中间产物低级酸,因而有机物去除率不高,高温 下反应向终产物方向偏移。

指标	温度/	总去除率 / %	<i>k</i> 1/ min ^{- 1}	k ₁ 偏差 / min ^{- 1}	<i>k</i> 2/ min ^{- 1})	<i>k</i> 2 偏差 / min ^{- 1}	<i>k</i> ₃ / min ^{- 1}	k ₃偏差 / min ^{- 1}	k 2/ k1	去除率最大 偏差/%
基于 COD _{Cr}	180	38.3	0.055 1	0.004 1	0.125 6	0.011 9	0.001 1	0.000 16	2.281 5	0.82
	200	49.1	0.085 2	0.005 9	0.162 0	0.014 3	0.002 1	0.000 17	1.900 7	2.00
	220	52.3	0.101 8	0.006 5	0.163 0	0.013 4	0.002 2	0.000 18	1.601 7	0.79
	240	65.0	0.163 6	0.009 2	0.166 1	0.012 5	0.003 1	0.000 24	1.015 7	1.49
	255	72.1	0.1990	0.011 3	0.167 4	0.013 1	0.004 0	0.000 28	0.8414	0.72
基于 TOC	180	23.7	0.016 2	0.001 9	0.079 2	0.013 3	0.0007	0.000 14	4.884 6	1.80
	200	34.5	0.048 0	0.004 5	0.173 9	0.020 1	0.001 5	0.000 12	3.627 1	0.62
	220	39.5	0.054 6	0.004 0	0.147 2	0.013 7	0.001 7	0.000 13	2.693 1	1.26
	240	50.3	0.105 2	0.007 2	0.205 8	0.0177	0.002 4	0.000 15	1.955 2	0.72
	255	57.8	0.128 2	0.008 7	0.215 7	0.018 5	0.003 2	0.000 17	1.682 6	0.76

表 3 分散兰废水湿式氧化通用模型速度常数

表 4 表观活化能与频率因子

指标	$E a_1 / (kJ \cdot mol^{-1})$	A 1 / min ⁻¹	r ²	$E a_2 / (kJ \cdot mol^{-1})$	A 2 / min ⁻¹	r^2	$E a_3 / (kJ \cdot mol^{-1})$	A 3 / min ⁻¹	r ²
基于 COD _{Cr}	33.74	427	0.983 1	6.58	0.783	0.868 3	31.60	5.226	0.941 9
基于 TOC	52.21	20 450	0.942 2	23.32	47.163	0.857 2	35.55	10.365	0.941 5

由图 6、7 可得表观活化能 Ea 和频率因子 A (见表 4)。结果表明,基于 CODcr的表观活化能为: 有机物氧化成终产物为 33.74 kJ/mol,氧化成低级 酸为 6.58 kJ/mol,由低级酸氧化成终产物为 31.60 kJ/mol,可见有机物氧化成低级酸的反应能较快进 行,而直接氧化或低级酸氧化成终产物的速度很慢, 升高温度主要加快了后两种途径的反应速度。

3 结 论

(1) 温度是废水湿式氧化的关键影响因素,升 温能显著提高氧化效果。

(2) 进水CODcr 46 710 mg/L在255 反应
2 h, CODcr 去除率达72.1%, 废水的可生化性从
0.15 上升到 0.69, 色度完全被去除(色度从 5 万倍
降到 50 倍以下), 说明湿式氧化对该废水具有较好的处理效果, 是有效的预处理技术。

(3) 湿式氧化前期呈现自由基反应特征,建立 了三参数通用动力学模型,该模型预测值与实验值 能较好吻合,基于 CODa的表观活化能:有机物氧化 成终产物为 33.74 kJ/mol,氧化成低级酸为 6.58 kJ/mol,由低级酸氧化成终产物为 31.60 kJ/mol。

电化学反应提高生物滤池的城市污水脱氮效果

张乐华^{1,2} 朱又春² 王亚林¹ 朱南文¹ 李 勇² 贾金平¹

(1.上海交通大学环境科学与工程学院,上海 200240;2.广东工业大学环境科学与工程学院,广州 广东 510090)

摘要为了探明电化学反应对废水生物处理效果的影响,研制了电极-生物滤池以及相对照的普通生物滤池各一套。通过两 套系统的对比试验,了解电化学反应对生物处理过程的影响。试验结果表明,电极-生物滤池与对照反应器相比较,COD_G和氨氮去 除率提高不明显,而总氮的去除率提高了14.9%。

关键词 电极 电极-生物反应器 脱氮 城市污水

1992年, Mellor^[1]等提出电极-生物反应器的概 念。1993年, Sakakibara^[2]等将反硝化细菌固定在阴 极表面,对地面水及饮用水中低浓度 NO3 进行处理, 取得了很好的效果。Flora^[3]和 Sakakibara^[2]等在考 虑了物质迁移速率、生物反应速率、电化学反应速率 及所采用的电解质等各种因素后,建立了电极-生物 膜模型。报导表明,当电流为0~20 mA时,该模型 与试验结果吻合良好,并推测净脱氮率主要受电流密 度的影响。近年来,国内对生物膜电极法水处理技术 的研究进展也较快^[4,5]。同济大学^[6]于 1996 年报道 用电极-生物反应器进行反硝化处理的试验研究结 果,探索了阴极生物的驯化挂膜时间、电流密度、反应 温度、进水总氮浓度等因素对反硝化效果的影响。高 廷耀等研究的电极生物膜反硝化反应器 获得较好的 反硝化效果。曲久辉[7]等提出了异养-电极-生物膜联 合反应器脱除地下水中硝酸盐的工艺.反应器最大反 硝化负荷为 10.68 g/(m³ ·h)。

但是,上述研究仅仅是将电极生物膜用于地下 水或饮用水的反硝化脱氮,基本未涉及对废水或污 水的处理及生物膜对其他污染物的降解能力^[8]。本 文在过去研究工作的基础上^[9~11],拟借鉴上述研究 成果,将电极反应过程引入城市污水的生物处理系

第一作者:张乐华,男,1974年生,博士,从事水处理研究工作。

参考文献

- Mishra V S, Mahajani V V. Wet air oxidation. Ind. Eng. Chem. Res., 1995, 34(1):42 ~ 48
- 2 Teletzke G H. Wet air oxidation. Chem. Eng. Pro., 1964, 60 (1):33 ~ 38
- 3 Dietrich M J. Wet air oxidation of hazardous organics in waste water. Environ. Prog., 1985, 4(3):171~177
- 4 唐文伟,赵建夫,顾国维,等.废水处理中湿式氧化技术研究进展.

统,通过试验初步探明在电极反应与生物协同作用 下,城市污水处理效果的变化。

本研究设计的电极-生物滤池是以活性炭生物 滤池为主体,引入电极系统。由于阳极和阴极的不 同电化学反应,使反应器内造成微区域或局部区域 的氧化性(好氧)与还原性(厌氧)的交替环境^[11]。 从而该反应器在作为普通生物反应器去除有机物的 同时,并达到作为电极-生物反应器具有高效反硝化 效果的目的。试验中通过测定电极-生物滤池(对照 反应器为生物滤池)对 CODcr、氨氮和总氮的去除效 果,以说明电化学作用对废水生物处理的影响。

1 试验装置

试验装置如图 1 所示。反应器均为自行研制, 外形尺寸相同,筒体为 PVC 管,有效直径为 19.5 cm,反应区容积为 4.5 L,属于下进水上出水的升流 式反应器。电极-生物滤池在普通生物滤池的基础 上加上电极系统。阳极为直径 3 cm 的石墨棒。阴 极为均匀地环绕在 PVC 管内壁的 12 片普通铁板, 共宽 30 cm,铁片长 15 cm,故阴极电极面积共为 450 cm²。两反应器中均加有填料,填料的总容积均 为 4L。填料是活性炭和瓷珠的混合物,混合比例

上海环境科学,1999,18(5):220

Tang W W, Zeng X P, Zhao J F, et al. The study on the wet air oxidation of highly concentrated emulsifed wasterwater and its kinetics. Separation and Purification Technology, 2003, 31 (4):77 ~ 82

责任编辑:陈泽军 (修改稿收到日期:2004-11-03)

⁶ Li L. Generalized kinetic model for wet oxidation of organic compounds. J. AICHE., 1991,37(11):1687~1697