哈尔滨产乙醇杆菌属 AFLP 反应 体系的建立与优化

郑国香¹² 陈忠林¹ ,郑文玲² ,关正军² ,吴忆宁¹ ,任南琪¹

(1. 哈尔滨工业大学 市政环境工程学院 ,150090 哈尔滨 ,rnq@ hit. edu. cn; 2. 东北农业大学 工程学院 ,150030 哈尔滨)

摘 要:为建立和优化适合于哈尔滨产乙醇杆菌属基因组 AFLP 分析的技术体系,以哈尔滨产乙醇杆菌属 Ethanoligenens harbinense 为研究材料,对 AFLP 反应体系的几个关键参数进行探讨和优化.结果表明 20 μ L 反应体系中,用于酶切的基因组 DNA 的纯度(OD₂₆₀/OD₂₈₀)和质量分别为 1.8 ~ 1.9 和 50 ~ 100 ng 之间为 宜;限制性内切酶(EcoRI/Msel)组合的最佳酶切用量和酶切时间分别为 EcoRI(2.0 μ L)/Msel(0.7 μ L) 和 3 h;琼脂糖凝胶电泳图谱对比显示,利用 EcoRI – A/MseI – G、EcoRI – G/MseI – A、EcoRI – G/MseI – C、 EcoRI – T/MseI – A、EcoRI – T/MseI – C、EcoRI – T/MseI – G和 EcoRI – T/MseI – T 7 个选择性扩增引物组 合选扩出的条带稳定、清晰、无背景干扰,能够很好地反映哈尔滨产乙醇发酵细菌间 DNA 指纹图谱的多态性 分布,为构建发酵产氢细菌 AFLP 图谱和种间遗传多样性奠定基础. 关键词:AFLP;产氢发酵细菌;优化;多态性

中图分类号: X172 文献标志码: A 文章编号: 0367 - 6234(2011) 06 - 0020 - 05

Establishment and optimization of AFLP techniques of *Ethanoligenens harbinense*

ZHENG Guo-xiang¹², CHEN Zhong-lin¹, ZHENG When-ling², GUAN Zheng-jun², WU Yi-ning¹, REN Nan-qi¹

(1. School of Municipal and Environmental Engineering, Harbin Institute of Technology, 150090 Harbin, China, rnq@ hit. edu. cn; 2. College of Engineering, Northeast Agricultural University, 150030 Harbin, China)

Abstract: In order to establish and optimize the technology system of AFLP for *Ethanoligenens harbinense* 's genome , in this study several key factors influencing AFLP were studied and optimized in detail. The results showed that the effect was better when purity and concentration of template DNA (OD_{260}/OD_{280}) were 1.8 – 1.9 and 50 – 100 ng respectively in 25 µL reaction system. The best dosage and time of restriction enzyme digestion of (EcoRI/MseI) were EcoRI (2.0 µL) / MseI (0.7 µL) and 3 h respectively. Furthermore , agar gel electrophoresis map analysis also showed that the bands , which were amplified by 7 different primer combinations of EcoRI - A/MseI - G, EcoRI - G/MseI - A, EcoRI - G/MseI - C, EcoRI - T/MseI - A, EcoRI - T/MseI - G, EcoRI - T

Key words: AFLP; hydrogen-producing fermentative bacteria; optimization; polymorphism

扩增片段长度多态性(Amplified Fragment Length Polymorphism, AFLP) 是结合 RFLP 和 RAPD 优点的基础上发展起来的一项技术.基于 其可靠性和 PCR 技术的高效性,且具有快速、灵 敏、稳定、所需 DNA 量少、多态性检出率高、重复 性好、可以在不知道基因组序列特点的情况下进

收稿日期: 2010-04-20.

行研究等特点,被认为是一种十分理想的、有效 的、先进的分子标记方法,现已广泛用于遗传图谱 构建^[1-2]、遗传多样性研究^[3-5]、基因定位及品质 鉴定^[6-7]等方面.利用 AFLP 分子标记的方法探 讨产氢突变菌株和野生菌株的基因组 DNA 之间 的遗传多态性差异,将为更深入地研究产氢突变 菌株的突变机理提供重要的信息基础.针对哈尔 滨产乙醇菌杆菌属的分子标记研究还未见有报 道,本研究以发酵产氢细菌作为研究对象,建立和 优化适合于哈尔滨产乙醇杆菌属基因组 AFLP 分 析的技术体系,为进行发酵产氢细菌的遗传代谢 机理的深入研究提供重要的技术支撑和信息 基础.

- 1 实 验
- 1.1 实验菌株和培养条件

本实验所用的出发菌株分离于 CSTR 生物制 氢反应器的活性污泥,为乙醇型厌氧发酵产氢细 菌 哈尔滨产乙醇杆菌 Ethanoligenens harbinense ZGX4,以其为出发菌株经过诱变筛选获得突变株 Ethanoligenen harbinenseYR - 3,以上菌株由哈尔 滨工业大学市政环境生物技术中心提供.

- 1.2 微生物的保存、激活及厌氧培养条件 参考文献 [8]方法进行.
- 1.3 DNA 的提取

将1 mL 已经预先活化的菌液接入 10 mL 的 RZL-2 培养基中 37 °C 进行厌氧过夜培养,然 后将2 mL 的接种液转接入装有 50 mL RZL-2 培 养基的培养瓶中,在 37 °C 培养 24 ~28 h. 菌液的 DNA 提取利用华舜细菌 DNA 提取试剂盒,提取 的 DNA 用 0.8% 琼脂糖电泳进行检测,并用蛋 白质核酸分析仪(Beckman Coultor DU800)检测 DNA 的质量和纯度.

- 1.4 AFLP 指纹分析体系的优化
- 1.4.1 酶切与连接

1) 酶切: 37 ℃下,采用 *Eco*RI 和 *Mse*I 两种酶 对细菌 DNA 的全基因组进行酶切.

2) 纯化酶切样品: 将 1/10 体积的醋酸钠和 2.5 体积的冰醋酸加入酶切样品, -20 ℃条件下 保存 2 h; 然后在 4 ℃ 20 000 r/min 离心 15 min, 弃上清液 加 70% 乙醇溶解沉淀 20 000 r/min 离 心 15 min ,弃上清液 ,干燥 ,30 µL TE 液溶解 ,置 于 -20 °C 下保存.

3) 接头的连接: 利用 T4 DNA 酶连接 DNA 酶 切片段和接头.(酶切+接头)混合样品分别稀释 10、20 和 30 倍,做预扩增的模板. 1.4.2 预扩增反应

94 ℃ 变性 30 s ,56 ℃ 退火 30 s ,72 ℃ 延伸 80 s. 取4 μL 样在 0.8%的琼脂糖凝胶电泳检测, 样品稀释 10、20 和 30 倍,做选择性扩增的模板.

1.4.3 选择性扩增反应

采用选择性引物对进行特异性选择扩增.程 序:30个循环 94 ℃ 30 s 65 ℃→55 ℃30 s 72 ℃ 80 s 退火温度每个循环降 0.3 ℃.取 PCR 样品 3 μL进行琼脂糖电泳检测.

2 结果与讨论

扩增片段长度多态性分子标记(AFLP)具有 在一次实验中可同时观测大量限制性片段的优 点,是目前最有效的分子标记技术.AFLP反应程 序中模板 DNA 质量及酶切片段扩增反应的条件 是否恰当都将影响最终结果的分析.因此,利用产 氢野生菌株和突变菌株作为研究对象,探讨和优 化 AFLP 程序中的试验条件将为增加产氢发酵细 菌的遗传多态性和高效性提供重要的实验基础. 2.1 模板 DNA 的质量和纯度

AFLP 对样本的 DNA 纯度要求较苛刻 ,基因 组 DNA 的纯度直接影响 AFLP 后续的实验结果. 使用细菌 DNA 抽提试剂盒对产氢野生菌株 ZGX4 和突变菌株 YR-3 进行了 DNA 提取. 利用紫外 分光法测定 DNA 的质量和纯度 ,结果表明 ,DNA 质量在 50~100 ng 时,当 OD₂₆₀/OD₂₈₀小于 1.8 时 ,DNA 样品中存在蛋白质污染现象 ,见图 1 的 泳道3和4,同时出现明显的弥散现象,即DNA 降解迹象. 而 OD₂₆₀ / OD₂₈₀ 大于 1.9 的 DNA 样品, 存在明显的 RNA 污染和 DNA 降解脱尾现象,如 图1中的泳道5和6所示;选用OD₂₆₀/OD₂₈₀在 1.8~1.9 之间的 DNA 样本,经琼脂糖电泳检测 结果(图1的泳道1和2)显示,产氢菌株的DNA 带型整齐,无 RNA 污染和 DNA 降解,完全符合 AFLP 试验要求,进行 PCR 扩增可以获得稳定、清 晰的带谱 表明 DNA 质量符合 AFLP 后续的试验 操作要求.

2.2 基因组 DNA 的酶切和连接

通常情况下,选用单一限制性内切酶对 DNA 进行酶切,产生的 DNA 片段较少,体现出来的 DNA 片段多态性效果较差^[4]. AFLP 所使用的限 制性内切酶一般采用两种,一种是内切酶的识别 位点是6个碱基,例如 EcoRI、PstI 和 SacI;另一 种是4 碱基内切酶,如 MseI、TaqI 和 SseI.选用两 种酶同时酶切可以产生比较小的酶切片段,经过 PCR 反应扩增出的产物范围可在 100~2 000 bp 之间. 本实验选用 EcoRI / MseI 作为产氢细菌 YR - 3 和 ZGX4 基因组 DNA 的限制性内切酶.

Marker,分子量标准 λ-HindII, 1,3,5—wild strain ZGX4;2,4,6—mutant YR-3.

图1 产氢细菌基因组 DNA 琼脂糖电泳图

AFLP 片段的多态性及丰富性是由酶切的多态性和丰富性决定的,因此,酶切质量是决定 AFLP 成功与否的关键前提条件之一.酶用量过 大,首先是造成浪费,MseI 酶是稀有酶,价格昂 贵,用量过多还会在相同时间出现酶切过头的现 象.用量过少,所需要的时间过长,而且常常会导 致酶切不完全.因此,准确把握酶的用量及酶切时 间十分重要.

2.2.1 酶切用量

大量实验已经表明,AFLP的两种限制性内 切酶的总量不能超过反应体积的1/10^[9],本实验 针对发酵产氢细菌基因组 DNA 材料,采用 *Eco*RI (20 U/µL) / *Mse*I(10 U/µL) 做双酶切,设定其用 量 组 合 分 别 为 1, *Eco*RI (0.5 µL) / *Mse*I (0.2 µL); 2, *Eco*RI (1.0 µL) / *Mse*I (0.4 µL); 3, *Eco*RI (1.5 µL) / *Mse*I (0.6 µL); 4, *Eco*RI (2.0 µL) / *Mse*I (0.7 µL); 5, *Eco*RI (2.5 µL) / *Mse*I (1 µL); 6, *Eco*RI (3.0 µL) / *Mse*I (1.5 µL), DNA 质量为 60 ng 时间为 3 h. 利用琼脂糖凝胶电泳进行 检测 具体的酶切用量对产氢细菌基因组 DNA 产生 的酶切效果见图 2 所示.

试验结果表明,利用 *Eco*RI(0.5 μL)/*Mse*I (0.2 μL)对哈尔滨产乙醇发酵细菌的 DNA 进行酶 切之后效果很差 如图 2 的泳道 1 DNA 酶切片段多 分布在 800~2 000 bp,基本没有切开;利用 *Eco*RI (1.0 μL)/*Mse*I(0.4 μL)和 *Eco*RI(1.5 μL)/*Mse*I (0.6 μL)组合的酶切效果表明 DNA 酶切片段分布 的范围在 500~2 000 bp 如图 2 的泳道 2 和 3 所示; 而通过对比发现,利用 *Eco*RI(2.0 μL)/*Mse*I (0.7 μL)和 *Eco*RI(2.5 μL)/*Mse*I(1 μL)两个酶切 组合的试验结果显示 在 100~2 000 bp 都有 DNA 酶 切片段出现,见图 2 的泳道 4 和 5 酶切用量都比较 理想 鉴于经济性考虑,在相同酶切效果的前提下, 选择 *Eco*RI (2.0 μ L) / *Mse*I (0.7 μ L) 为哈尔滨产乙 醇杆菌属的最佳酶切用量; 当继续增加酶切用量,即 *Eco*RI (3.0 μ L) / *Mse*I (1.5 μ L) 时 如图 2 的泳道 6 所示 出现了小于 100 bp 的 DNA 酶切片段.可见 限 制性内切酶用量太少 导致酶切不完全,基因组多态 性不丰富. 酶用量过多,既造成了浪费,又容易出现 酶切过头现象,产生低于 100 bp 的 DNA 片段,导致 接头接不上 PCR 反应失败^[10].

Marke-DL-2000; 1-*Eco*RI (0.5 μL)/*Mse*I (0.2 μL); 2-*Eco*RI (1.0 μL)/*Mse*I(0.4 μL); 3-*Eco*RI (1.5 μL)/*Mse*I (0.6 μL); 4-*Eco*RI (2.0 μL)/*Mse*I (0.7 μL); 5-*Eco*RI (2.5 μL)/ *Mse*I(1 μL); 6.*Eco*RI(3.0 μL)/*Mse*I(1.5 μL).

图 2 产氢细菌基因组 DNA 不同酶切用量的酶切效果

2.2.2 酶切时间

在确定最佳酶切组合和酶切用量后 .选择最恰 当的酶切时间也是影响酶切成败的必要条件. 如果 酶切时间过短 酶切不完全 .酶切片段不能覆盖整个 基因组 影响 PCR 扩增的多态性^[11]. 从图 3 可以看 出 酶切 3 h 的效果比较理想(泳道 3) 酶切片段在 100~2 000 bp 之间都有分布. 而泳道 1 和 2 的酶切 时间相对较短 分别为 1 h 和 2 h DNA 酶切不充分. 泳道 4(4 h) 和 5(5 h) 显示酶切时间过长 ,出现 100 bp以下的片段 .酶切过头将使接头连接不上 ,导 致 PCR 反应无结果. 因此 通过酶切时间的试验确定 利用 *Eco*RI (2.0 μL) / *Mse*I (0.7 μL) 酶切哈尔滨 产乙醇杆菌属的最佳时间为 3 h. 将 *Mse*I 和 *Eco*RI 接头配制成终质量浓度为 100 μmol/L ,T4 DNA 酶连 接 DNA 酶切片段和接头,连接时间过夜效果最好.

2.3 预扩增反应条件的选择

AFLP 反应程序中另一重要的环节就是酶切连 接产物的预扩增反应,该反应起着呈上启下的作 用,既反映酶切连接效果的好坏,又决定后续选择 性扩增反应成功与否.预扩增的目的是为选择性扩 增提供大量的模板,同时对模板起到选择性纯化的 作用,以使选择性扩增能产生清晰、稳定、易重复的 条带^[12-13].本试验酶切和接头的混合样本分别稀 释 10 倍(带1 和4)、20 倍(带2 和5) 和 30(带3 和 6)倍进行预扩增.图4显示,样品稀释的倍数对预 扩增影响的效果不是很明显 3 个梯度的稀释效果 都较好,扩增信号强,相对分子质量大小在 200~ 1 000 bp之间出现连续、均匀的弥散带,表明预扩增 效果较好,稀释后可为选择性扩增反应提供理想的 模板.

M—DL-2000;1—1 h;2—2 h;3—3 h;4—4 h;5—5 h.

图 3 产氢细菌基因组 DNA 不同酶切时间的酶切效果

M-DL-2000; 1, 2, 3-ZGX4; 4, 5, 6-YR-3.

图 4 预扩增反应图谱

2.4 选择性引物组合的选择

选择性引物的筛选很重要,不同的引物组合 扩增效果明显不同.而且不同的微生物基因组 DNA,同一引物组的扩增效果也大不相同.选择性 引物中3末端选择性核苷酸数目的多少确定了 AFLP扩增产物的多少,一般选择性碱基数目越 少,扩增的条带数越多;选择性碱基数目越多,扩 增的条带数越少.条带太多,不利于分辨;而条带 太少,则不利于多态性的检出^[14].因此,根据具体 的实验材料即基因组 DNA 的大小确定引物末端 所需的选择性核苷酸数目.

哈尔滨产乙醇厌氧发酵产氢细菌的基因组较 小,所以,采用的扩增策略是在两种限制性内切酶 的核心序列及识别序列基础上分别在3增加一个 选择性碱基(A,C,G,T)进行随机组合,表1显示 的是扩增产氢野生菌株ZGX4和突变菌株YR-3 的选择性引物的序列.选择稀释10倍的预扩增产 物为模板 利用 0.8% 琼脂糖凝胶电泳对 16 个限 制性酶切引物组合扩增出的 DNA 片段多态性进 行检测.每一个引物组合的试验对象为野生产氢 菌株 ZGX4(左侧) 和突变菌株 YR - 3(右侧) 結 果表明 不同引物组合的选择性扩增 DNA 多态性 分布差异较为明显,具体见图5所示.其中以1 $(EcoRI - A / MseI - A) \gtrsim 2(EcoRI - A / MseI - C) \lesssim$ 5(EcoRI - C/ MseI - A) 及 6(EcoRI - C/ MseI -C) 为选择性扩增引物组合扩增酶切片段的 PCR 效 果表现出的差异性不明显,产氢菌株 ZGX4 和 YR -3 的 DNA 酶切片段的 PCR 产物集中分布在 100 ~500 bp 之间, DNA 扩增片段太小,表明基因组 DNA 片段的多态性丰度不够,不能很好地表现出 基因组酶切片段的多态性差异 因此 本试验可以 确定(EcoRI - A/MseI - A)、(EcoRI - A/MseI -C) 、(EcoRI - C/ MseI - A) 及(EcoRI - C/ MseI -C) 引物组合不适合作为哈尔滨产乙醇杆菌属细菌 ZGX4 和 YR-3 的选择性扩增引物. 相对而言,利 用引物组合4(EcoRI-A/MseI-G)、9(EcoRI-G/MseI - A \ 10 (EcoRI - G/MseI - C \ 13 (EcoRI - T/MseI - A) 14(EcoRI - T/MseI - C)15(EcoRI - T/ MseI - G) 16(EcoRI - T/ MseI -T) 对产氢野生菌株 ZGX4 和突变菌株 YR - 3 的酶 切片段进行 PCR 的扩增结果显示 扩增片段在 100 ~1800 bp之间呈现出明显的特异性及多态性分 布. 而引物 3(EcoRI - A/ MseI - G)、7(EcoRI -C/MseI - G)、8(EcoRI - C/MseI - T) 和 12 (EcoRI-G/MseI-T) 组合的 DNA 扩增片段在琼 脂糖凝胶中表现相似的的分布状态 野生菌株和突 变菌株的 DNA 酶切片段的扩增产物所呈现出的特 异性不强 差异微小 因此 不适合作为哈尔滨产乙 醇杆菌属 AFLP 检测技术的选择性引物组合.

表1 选择性引物的序列

序号	内切酶	核心部分	酶切位点	选择性 3´末端
A1	Eco RI – A	5´ – GACTGCGTACC	AATTC	A – 3′
A2	<i>Eco</i> RI – C	5´ – GACTGCGTACC	AATTC	C - 3 -
A3	Eco RI – G	5´ – GACTGCGTACC	AATTC	G – 3´
A4	Eco RI – T	5´ – GACTGCGTACC	AATTC	T – 3´
B1	Mse I – A	5´ – GATGAGTCCTGAG	TAA	A – 3´
B2	Mse I – C	5´ – GATGAGTCCTGAG	TAA	C - 3
В3	Mse I – G	5´ – GATGAGTCCTGAG	TAA	G – 3´
B4	Mse I – T	5´ – GATGAGTCCTGAG	TAA	T – 3´

Marker-DL-2000;1-*Eco*RI-A/*Mse*I-A;2-*Eco*RI-A/*Mse*I-C;3-*Eco*RI-A/*Mse*I-G;4-*Eco*RI-A/*Mse*I-T;5-*Eco*RI-C/*Mse*I-A;6-*Eco*RI-C/*Mse*I-C;7-*Eco*RI-C/*Mse*I-G;8-*Eco*RI-C/*Mse*I-T;9-*Eco*RI-G/*Mse*I-A;10-*Eco*RI-G/*Mse*I-C;11-*Eco*RI-G/*Mse*I-G;12-*Eco*RI-G/*Mse*I-T; 13-*Eco*RI-T/*Mse*I-A;14-*Eco*RI-T/*Mse*I-C;15-*Eco*RI-T/*Mse*I-G;16-*Eco*RI-T/*Mse*I-T.

图 5 不同引物组合扩增产氢细菌 ZGX4 和 YR - 3 的 PCR 产物在琼脂糖凝胶电泳中的多态性

3 结 论

 AFLP 的反应体系为 20 μL,利用 EcoRI/ MseI 作为产氢细菌 YR - 3 和 ZGX4 基因 组 DNA 的限制性内切酶,最适酶切基因组 DNA 质量和纯度(OD₂₆₀/OD₂₈₀比值)范围分别为 50 ~ 100 ng 和 1.8 ~ 1.9.

2) 最佳酶切用量和酶切时间分别为 *Eco*RI (2.0 μ L) / *Mse*I (0.7 μ L) 和 3 h; 预扩增产物稀 释 10 倍为模板,以引物组合 *Eco*RI – A/*Mse*I – G、*Eco*RI – G/*Mse*I – A、*Eco*RI – G/*Mse*I – C、 *Eco*RI – T/*Mse*I – A、*Eco*RI – T/*Mse*I – C、*Eco*RI – T/*Mse*I – G和 *Eco*RI – T/*Mse*I – T 进行选择性 扩增 效果较为理想,可以获得较为明显的 DNA 多态性分布差异.

参考文献:

- [1] GANTER P F , BARROS D E , LOPES M. The use of anonymous DNA markers in assessing worldwide relatedness in the yeast species pichia kluyveri bedford and kudrjavzev [J]. Can J Microbiol ,2000 ,46(11) : 967 -980.
- [2] ZIMNOCH GUZOWSKA E , MARCZEWSKI W , LE– BECKA R , et al. QTL analysis of new sources of re–

sistance to Erwinia carotovo – rassp. atrosepticain potato done by AFLP, RFLP and resistance gene – like markers [J]. Crop Sci, 2000, 40: 1156 – 1167.

- [3] MCULIFFE L , KOKOTOVIC B , AYLING R D , et al. Molecular epidemiological analysis of mycoplasma bovis isolates from the United Kingdom shows two genetically distinct clusters [J]. J Clin Microbiol , 2004 , 42 (10): 4556 - 4565.
- [4] SHAH A, LI D Z, GAO L M, et al. Genetic diversity within and among populations of the endangered species *Taxus fauna* (Taxaceae) from Pakistan and implications for its conservation [J]. Biochemical Systematic and Ecology , 2008, 36: 183 – 193.
- [5] KUMAR V, SHARMA S, KERO S, et al. Assessment of genetic diversity in common bean (*Phaseolus* vulgaris L.) germ plasm using amplified fragment length polymorphism (AFLP) [J]. Scientia Horticu Lturae, 2008, 116: 138 – 143.
- [6] THOMAS C, VOS C, ZABEAN M, et al. Identification of amplified restriction fragment length polymorphism (AFLP) markers lightly linked to the tomatoCf -9 gene for resistence to *Cladosporiumfluvum* [J]. The Plant Jour, 1995, 8: 785 794.
- [7] SIMONS G, VANDER L T, DIERGRADE P, et al. AFLP – based fine mapping of the Mlo gene to a 30 – (下转第55页)

3) 快速曝气 10 min 能够有效去除水中残余 磷酸盐,磷酸盐去除率从缺氧段的 92% 提高到 99%,并且能够有效改善污泥的沉降性能,SV 为 21%,避免氮气污泥上浮的发生.

参考文献:

- BAKER P S, DOLD P L. Denitrification behaviors in biological excess phosphorus removal activated sludge system [J]. Wat Res , 1996 30(4):769 - 780.
- [2] KUBA T, WACHTMEISTER A, LOOSDRECHT van M C M, et al. Effect of nitrate on phosphorus release in biological phosphorus removal system [J]. Wat Sci Tech ,1994 30(6): 263 – 269.
- [3] LIU Yan, CHEN Yinguang, ZHOU Qi. Effect of initial pH control on enhanced biological phosphorus removal from wastewater containing acetic and propionic acids [J]. Chemosphere, 2007 66(26):123-129.
- [4] CARVALHO G , LEMOS P C , OEHMEN A , et al. Denitrifying phosphorus removal: linking the process erforanc with the microbial community structure [J]. Water Research 2007 A1(19):1 – 14.
- [5] WANG Yayi , PAN Mianli , YAN Min , et al. Characteristics of anoxic phosphors removal in sequence batch reactor [J]. Journal of Environmental Sciences , 2007 ,

19(7):776-782.

- [6] 荣宏伟,张朝升,张可方.(AO)₂ SBBR反硝化除 磷工艺处理低碳城市污水[J].中国给水排水, 2006 22(15):29-32.
- [7] 吴昌永 彭永臻 彭轶. A₂O 工艺处理低 C/N 比生 活污水的试验研究[J]. 化工学报,2008 *5*9(12): 6213-6313.
- [8] SPONZA D T, ATALAY H L. Influence of nitrate and COD on phosphorus, nitrogen and dinitrotoluene (DNT) removals under batch anaerobic and anoxic conditions [J]. Anaerobe, 2004, 10(5):287-293.
- [9] SOEJIMA K, MATSUMOTO S. Modeling and experimental study on the anaerobic/aerobic/anoxic process for simultaneous nitrogen and phosphorus removal: the effect of acetate addition [J]. Process Biochemistry, 2008 A3 (6): 605-614.
- [10] WACHTMEISTER A , KUBA T , LOOSDRECHT van M C M. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge [J]. Wat Res ,1997 ,31(3): 471-478.
- [11] 邹华 阮文权 陈坚. 硝酸盐作为生物除磷电子受体的研究[J]. 环境科学研究,2002,15(3):38-41.

(编辑 刘 彤)

(上接第24页)

kb DNA segment of the barley genome [J]. Genetics , 1997 ,44: 61 – 70.

- [8] 郑国香,任南琪,李永峰,等.一株高效产氢突变体 RF-9的筛选与产氢特性[J].中国环境科学 2007, 27(2):184-188.
- [9] VOS P R , HOGERS M , BLEEKER M , et al. AFLP: a new concept for DNA fingerprinting [J]. Nucleic Acids Res , 1995 , 23: 4407 – 4414.
- [10] WANG Z, GAO H W, WU Y Q, et al. Genetic diversity and population structure of Caragana korshinskii revealed by AFLP [J]. Crop Science, 2007, 47: 1737 – 1743.
- [11] LARSON S R , JONES T A , JEBSEN K B. Population structure in *Pseudoroegneria spicata* (Poaceae:

Triticeae) modeled by Bayesian clustering of AFLP genotypes [J]. American Journal of Botany, 2004, 91(11): 1789 – 1801.

- [12] 宋晓飞,李晓丽,冯志红,等.黄瓜基因组 DNA 提 取及 AFLP 体系优化研究[J]. 安徽农业科学, 2009,37(29):14035-14037.
- [13] 陈旭辉,高玉葆,朱敏杰,等.小叶锦鸡儿基因组 DNA的提取及AFLP反应体系的建立[J]. 植物 研究 2009 29(5):529-533.
- [14] SHI J , XIN L , YANG Y ,et al. Discussion on AFLP molecular markers in Pipermethysticum and pepper
 [J]. Agricultural Science & Technology ,2007 ,8(3/4):5-10.

(编辑 刘 彤)