MnO₂ 催化 KMnO₄ 氧化降解酚类化合物 庞素艳123 汀讲23 马军123* 欧阳峰1 (1. 哈尔滨工业大学深圳研究生院,深圳 518055; 2. 哈尔滨工业大学市政环境工程学院城市水资源与水环境国家重点实验室, 哈尔滨 150090; 3. 城市水资源开发利用(北方)国家工程研究中心, 哈尔滨 150090) 摘要:研究了 MnO_2 强化 $KMnO_4$ 氧化降解酚类化合物的效能与机制. 在假一级动力学实验条件下($KMnO_4$ 初始浓度是目标有机物初始浓度的 10 倍),考察了 $KMnO_4$ 对酚类化合物(2-氯酚和 4-氯酚)的氧化降解规律. 发现在 $KMnO_4$ 氧化降解酚类化合物过程中存在着明显的自催化现象,即原位产生的胶体 MnO_2 可以促进 $KMnO_4$ 对有机物的氧化降解. 实验进一步考察了 MnO_2 浓度、粒径大小和溶液 PH 对 MnO_2 催化 $EMnO_4$ 氧化降解酚类化合物的影响. 结果表明,外加胶体 $EMnO_2$ 和颗粒 $EMnO_2$ 都可以催化 $EMnO_4$ 氧化降解酚类化合物,而且假一级动力学常数($EMnO_4$) 随着 $EMnO_2$ 浓度($EMnO_4$) 如 $EMnO_2$ 和 $EMnO_2$ 相比,颗粒 $EMnO_2$ 的催化能力较弱;随着溶液 $EMnO_4$ 相比,颗粒 $EMnO_2$ 的催化的 $EMnO_4$ 如 和 关键词:MnO,;KMnO,;催化;酚类化合物;表面吸附 中图分类号: X703.1 文献标识码: A 文章编号: 0250-3301 (2010) 10-2331-05 # Oxidation of Phenolic Compounds with Permanganate Catalyzed by Manganese Dioxide PANG Su-yan^{1,2,3}, JIANG Jin^{2,3}, MA Jun^{1,2,3}, OUYANG Feng¹ (1. Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; 2. State Key Laboratory of Urban Water Resources and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 3. National Engineering Research Center of Urban Water Resources, Harbin 150090, China) Abstract: The effectiveness and mechanism of manganese dioxide (MnO_2) enhancing permanganate ($KMnO_4$) oxidation of phenolic compounds were investigated. Under the pseudo-first-order kinetic conditions (i. e. , the initial concentration of $KMnO_4$ was ten times higher than that of phenolic compounds) , the oxidation kinetics of 2-chlorophenol and 4-chlorophenol by $KMnO_4$ were examined. The reactions displayed autocatalysis , suggesting a catalytic role of *in situ* formed final products MnO_2 . Further experiments were conducted to evaluate the effects of the initial concentration and particulate MnO_2 additives as well as solution pH on $KMnO_4$ oxidation. It was found that both ex situ-preformed colloidal and particulate MnO_2 additives could significantly enhance $KMnO_4$ oxidation of these phenolic compounds. Also , the pseudo-first-order rate constants K for the degradation of these phenolic compounds were observed to increase linearly with the increase of MnO_2 concentration (in the range of $30 \sim 180 \ \mu mol \cdot L^{-1}$). For the same concentration , colloidal MnO_2 had much stronger ability than particulate MnO_2 to promote $KMnO_4$ oxidation. The increase of solution pH decreased the catalytic ability of MnO_2 . Moreover , it was found that MnO_2 could catalyze $KMnO_4$ oxidation of 2-nitrophenol which otherwise exhibited negligible reactivity toward MnO_2 and $KMnO_4$, respectively , but had no effect on $KMnO_4$ oxidation of dimethyl sulfoxide (DMSO) which did not contain the moieties capable of forming complexes with the surface bound metals of MnO_2 . On the basis of these results , a catalytic mechanism was proposed; that was , the surface adsorption (i. e. , the formation of surface complexes) was necessary and the surface bound phenolic compounds were more susceptible toward $KMnO_4$ oxidation than their solution counterparts. Key words: manganese dioxide; potassium permanganate; catalysis; phenolic compounds; surface adsorption 高锰酸钾 ($KMnO_4$) 作为水处理过程中常用的氧化剂 ,易氧化一些含有不饱和官能团的有机物 $^{[1-4]}$,而且在氧化除污染过程中不会产生有毒、有害副产物 ,其最终还原产物为不溶性、环境友好的胶体 MnO_2 . 这种新生胶体 MnO_2 具有颗粒小、分散度高、水合作用强等特点 ,可以通过吸附、氧化、助凝等多重功能协同 $KMnO_4$ 除污染 $^{[5-7]}$. 正是由于上述优良的除污染效能 ,加之 $KMnO_4$ 使用方便、稳定、价格 便宜等特点,自 20 世纪 80 年代研究人员开始对 KMnO₄ 除污染技术进行了深入系统的研究,探讨了 收稿日期:2010-02-11;修订日期:2010-05-24 基金项目:国家科技支撑计划项目(2006BAJ08B05);国家水体污染控制与治理科技重大专项(2009ZX07424-005,2009ZX07424-006) 作者简介:庞素艳(1978~),女,博士研究生,主要研究方向为水与 废水的化学氧化及高级氧化处理技术,E-mail:psyhit@ * 通讯联系人 Æ-mail:majun@ hit. edu. cn 对水中丙烯酰胺^[8]、微量有机污染物^[9],10]、消毒副产物前质^[11-13]的去除等. 另外, $KMnO_4$ 氧化也被普遍认为是一种优良的土壤和地下水原位修复技术^[14],15]. $KMnO_4$ 作为固体氧化剂,水溶性大,可以通过水溶液的形式很方便地导入土壤和地下水的受污染区域,而且 $KMnO_4$ 的还原产物 $MnO_2^{[15-17]}$ 作为土壤和地下水的成分之一,不会造成二次污染. 本实验系统研究了 $KMnO_4$ 氧化降解酚类化合物 [2-氯酚(2-CP) 和 4-氯酚(4-CP)]的动力学规律,结果表明反应过程中存在着自催化现象,即原位生成的 MnO_2 可以促进 $KMnO_4$ 氧化. 通过各种影响因素分析,揭示了 MnO_2 表面络合催化 $KMnO_4$ 的反应机制. MnO_2 催化作用的发现对以前 MnO_2 协同 $KMnO_4$ 除污染 [18] 的认识是一个很好的补充,同时也为 $KMnO_4$ 除污染的应用提供了新的理论依据. #### 1 材料与方法 # 1.1 化学试剂 胶体 MnO_2 参照文献 [19] 的方法由 $Na_2S_2O_3$ 和 $KMnO_4$ 按式 (1) 计量关系反应生成. 这种胶体 MnO_2 可以在室温条件下稳定数月 ,其平均粒径为 90 nm 左右. 为了区别于 $KMnO_4$ 氧化过程中原位生成的 MnO_2 ,文中异位制备的 MnO_2 用 MnO_2 *表示. $3S_2O_3^{2-} + 8MnO_4^{-} + 2H^{+} \rightarrow 8MnO_2^{*} + 6SO_4^{2-} + H_2O$ 异位制备的颗粒 $\mathrm{MnO_2}^*$ 采用文献 [19]的方法 进行制备 ,其浓度利用还原剂还原后采用 ICP 测定. 2-氯酚、4-氯酚和二甲基亚砜均为分析纯,购于Aldrich-Sigma公司.实验中使用的其他常规试剂未 经特别说明均为分析纯,购于上海国药集团.甲醇、冰乙酸和磷酸为色谱醇,购于 Dikma 公司. #### 1.2 实验方法 实验在 25° C 水浴条件下 ,含 50 mL 反应溶液的 100 mL 锥形瓶中进行. 反应液中含有一定浓度的目标有机物、缓冲溶液或者 MnO_2^* ,迅速加入 $KMnO_4$ 起始反应. 在不同反应时间 ,取出样品 ,用 $1 \text{ mol} \cdot L^{-1}$ 强还原剂抗坏血酸终止反应 ,然后对样品中有机物的剩余浓度进行分析测定. pH 4 和 5 为 $10 \text{ mmol} \cdot L^{-1}$ 乙酸缓冲 ,pH 8 和 9 为 $10 \text{ mmol} \cdot L^{-1}$ 硼酸缓冲 ,而 pH 6 和 7 为未使用缓冲 ,利用 $HClO_4$ 和 NaOH 调节反应过程中 pH 恒定 ,因为磷酸盐缓冲对 $KMnO_4$ 氧化影响很大. #### 1.3 分析方法 有机物浓度采用 Waters 1525 高效液相色谱配以 2487 双通道紫外检测器和 717 Plus 自动进样器进行测定. #### 2 结果与讨论 ## 2.1 KMnO₄ 氧化降解酚类化合物的自催化现象 图 1 给出了在 pH 为 4.0 和 5.0 假一级实验条件下($KMnO_4$ 初始浓度是目标有机物初始浓度的 10 倍), $KMnO_4$ 氧化降解 2-氯酚(2-CP)和 4-氯酚(4-CP)的动力学曲线.可以看到, $KMnO_4$ 在氧化降解酚类化合物过程中存在明显的自催化现象,即假一级动力学曲线的斜率随着时间的延长逐渐增大,这种自催化现象表明, $KMnO_4$ 氧化降解有机物过程中原位生成的 MnO_2 对反应具有促进作用 $^{[20]}$. 同时这一 $[KMnO_4]_0 = 60 \ \mu mol \cdot L^{-1}$, $[2-CP]_0 = [4-CP]_0 = 6 \ \mu mol \cdot L^{-1}$ 图 1 KMnO₄ 氧化降解酚类化合物 Fig. 1 Kinetics of oxidative degradation of phenolic compounds by permanganate 实验现象与 Jiang 等 $^{[21]}$ 所研究的 MnO_2 可以催化 $KMnO_4$ 氧化降解酚类化合物(三氯生、苯酚和 2 A-二氯酚)的规律相一致. ## 2.2 MnO2 催化机制推测 为进一步证实原位生成 MnO_2 的促进作用 ,实验考察了外加胶体 MnO_2^* 对 $KMnO_4$ 氧化降解 4-CP 的影响. 图 2 给出了 pH 为 4 和 5 条件下 ,单独 $KMnO_4$ 、单独胶体 MnO_2^* 和胶体 MnO_2^* 与 $KMnO_4$ 共存 3 种情形下 4-CP 氧化降解动力学曲线. 可以看 到 胶体 MnO_2^* 的存在大幅度提高了 $KMnO_4$ 氧化 4-CP 的速率 ,而胶体 MnO_2^* 本身氧化降解 4-CP 速度却非常慢. 这一实验现象也与胶体 MnO_2^* 促进 $KMnO_4$ 氧化降解 2-硝基酚 (2-NP) 相一致 ,在实验的 600min 内,单独胶体 MnO_2^* 和单独 $KMnO_4$ 对 2-NP 几乎不降解,但二者组合却能使得 2-NP 的去除率达到 90%(如图 3). 据此可以推测, MnO_2 对 $KMnO_4$ 氧化降解酚类化合物的促进作用不是其氧化能力的叠加,而可能是一种催化作用. $[KMnO_4]_0 = 60 \mu mol \cdot L^{-1}$, $[MnO_2^*]_0 = 60 \mu mol \cdot L^{-1}$, $[4-CP]_0 = 6 \mu mol \cdot L^{-1}$ 图 2 MnO₂ * 对 KMnO₄ 氧化降解 4-CP 的催化作用 Fig. 2 $\text{MnO}_2^{\ *}$ -catalyzed oxidation of 4-CP by permanaganate [KMnO₄]₀ = 60 μ mol·L⁻¹, [MnO₂*]₀ = 60 μ mol·L⁻¹, [2-NP]₀ = 6 μ mol·L⁻¹, pH = 4.0 图 3 MnO₂ * 催化 KMnO₄ 氧化降解 2-NP Fig. 3 MnO_2^* -catalyzed oxidation of 2-NP by permanaganate 以往的研究对 MnO_2 与酚类化合物之间的作用机制做了大量的基础性工作,也得到了比较一致的 结论 即遵循氧化耦合反应机制[22]. 整个反应过程 可以描述为以下 3 个步骤:① 酚类化合物在 MnO, 表面吸附,与其表面的某些活性位[一般认为是表 面键合的 Mn(IV)]形成表面络合物;② 通过表面 络合物的内电子转移,导致酚被氧化形成酚氧自由 基 同时 Mn(IV)被还原;③ 产物的释放 ,形成的有 机自由基在溶液中相互耦合形成聚合物. 表面络合 物的形成速度或内电子转移速度是整个反应的限速 步骤. 例如 2-NP 很难被 MnO,* 氧化 ,主要是由于硝 基的强吸电子作用使得表面络合物的内电子转移过 程受限. 因此 ,可以推测 MnO₂* 对 KMnO₄ 氧化酚类 化合物的促进作用主要来源于它对有机物的吸附, 即表面络合物的形成. 换言之, 如果有机物不含有能 与金属离子形成络合物的官能团 ,那么 MnO2* 对其 被 KMnO4 氧化则没有促进作用.这一推理与 MnO₂^{*} 对 KMnO₄ 氧化降解 DMSO 的实验现象相一 致 ,如图 4 所示 ,KMnO4 氧化 DMSO 没有出现自催 化现象 ,外加胶体 MnO₂* 也没有表现出促进作用. [KMnO₄]₀ = 60 μ mol·L⁻¹, [MnO₂*]₀ = 60 μ mol·L⁻¹, [DMSO]₀ = 6 μ mol·L⁻¹, pH = 5.0 #### 图 4 MnO₂ * 对 KMnO₄ 氧化降解 DMSO 的影响 Fig. 4 Effect of $\mathrm{MnO_2}^*$ on the oxidation of DMSO by permanaganate # 2.3 胶体 MnO₂* 与颗粒 MnO₂* 催化能力对比 与胶体 MnO_2^* 相比 ,颗粒 MnO_2^* 的粒径大、比表面积小 ,因此表面吸附量小 ,而且表面吸附速度可能也会更慢. 比较二者催化能力更有助于理解 MnO_2 催化 $KMnO_4$ 氧化的机制. 此外 ,由于锰氧化物广泛存在于水环境中 ,如地下水、土壤、底泥等 ,而且 $KMnO_4$ 氧化技术也广泛地用于地下水和土壤修复 ,因此研究颗粒锰氧化物对 $KMnO_4$ 氧化的催化作用具有重要的实际意义. 图 5 给出了胶体 MnO_2^* 和颗粒 MnO_2^* 催化 $KMnO_4$ 氧化降解 2 A—二氯酚 (2 A—DCP) 的假一级动力学常数 (K) 与 MnO_2^* 浓度 ($30 \sim 180$ $\mu mol \cdot L^{-1}$) 的关系. 与预测的结果一致 ,无论是胶体 MnO_2^* 还是颗粒 MnO_2^* 的加入都明显的促进了 $KMnO_4$ 氧化;而且随着 MnO_2^* 浓度的增加 ,假一级速率常数 K 均呈线性增加. 对于相同 pH 和 MnO_2 浓度条件下 ,胶体 MnO_2^* 比颗粒 MnO_2^* 的催化活性更 [KMnO₄]₀ = 60 μmol·L⁻¹, [2 A-DCP]₀ = 6 μmol·L⁻¹ 图 5 胶体 MnO₂* 与颗粒 MnO₂* 催化 KMnO₄ 氧化降解 2 A-DCP 假一级动力学常数 K 对比 Fig. 5 Pseudo-first-order rate constants of the oxidation of 2 A-DCP by permanganate in the presence of colloidal and microparticulate manganese oxide 高(即 K 值更大),这可能是由于胶体 MnO_2 * 具有更大的比表面积、表面活性位较多、表面吸附量大的缘故. #### 2.4 pH 对胶体 MnO,* 催化性能的影响 表 1 给出了不同 pH 条件下 ,KMnO₄ 单独氧化和胶体 MnO_2^* 催化 $KMnO_4$ 氧化降解 2 A-DCP 的假一级动力学常数 K_0 和 K_1 ,用 K_1 与 K_0 的比值 R 来表征胶体 MnO_2^* 催化能力的大小. 从表 1 可以看到 R 值随着 pH 的升高而逐渐减小 ,即胶体 MnO_2^* 的催化能力随着 pH 的升高而逐渐减弱. 在 pH 为 4. 0 时 R 值最大为 11. 07 ,在 pH 为 5. 0 时 R 值为 6. 75. 而在 pH 为 9. 0 时 R 值约为 1 ,表明此时 MnO_2 已经不具备催化能力. MnO_2 催化 $KMnO_4$ 氧化降解有机物受 pH 影响比较大 ,主要是由于 MnO_2 颗粒的等电点一般在 2 ~ 3 之间 ,在实验所研究的 pH 范围内 MnO_2 表面带负电 ,而且随着溶液 pH 的升高 ,表面所带负电量增 表 1 pH 对 MnO₂ 催化 KMnO₄ 氧化降解 2 A-DCP 的影响¹⁾ Table 1 Effect of solution pH on the kinetics of the oxidation of 2 A-DCP by permanganate catalyzed by manganese oxide | рН | KMnO ₄ 单独氧化 | | MnO ₂ 催化 KMnO ₄ 氧化 | | P = V /V | |------|-------------------------|----------|--|----------|-----------------| | | K ₀ /min - 1 | 相关系数 r | K ₁ /min - 1 | 相关系数 r | $R = K_1 / K_0$ | | 4. 0 | 0. 009 8 | _ | 0. 108 5 | 0. 996 3 | 11. 07 | | 5. 0 | 0.0095 | _ | 0.0642 | 0. 997 1 | 6. 75 | | 6. 0 | 0. 022 3 | 0. 996 9 | 0. 035 2 | 0. 992 1 | 1.58 | | 7. 0 | 0.0462 | 0. 954 0 | 0. 056 3 | 0. 994 2 | 1. 22 | | 8. 0 | 0.0439 | 0. 939 4 | 0. 042 9 | 0. 991 2 | 0. 98 | | 9. 0 | 0.0123 | 0. 999 2 | 0. 012 1 | 0. 995 6 | 0. 98 | ¹⁾ 由于在 pH 为 4.0 和 5.0 时 ,自催化现象明显,不能用假一级速率常数表示 K_0 为初始速率常数 加. 另外 ,溶液 pH 的升高也会促进 2 μ -DCP (p K_a = 7.9)的电离 ,由于两者静电排斥作用增强 ,减弱了 2 μ -DCP 在 MnO₂ 表面的吸附. 同时溶液 pH 的升高促进 2 μ -DCP 的电离也会加快单独 KMnO₄ 与 2 μ -DCP 的反应速率. 因此 ,不难理解溶液 pH 的升高减弱了 MnO₂ 的催化能力. 反之 ,pH 的影响规律也进一步验证了 MnO₂ 表面吸附络合的重要性 [19 22]. #### 3 结论 - (1) MnO_2 对 $KMnO_4$ 氧化降解酚类化合物具有催化作用 ,遵循表面吸附络合催化机制 ,即吸附在 MnO_2 表面与某些活性位键合的有机物比其在溶液中更易被 $KMnO_4$ 氧化. - (2) MnO_2 表面吸附络合催化机制决定了其催化效能受 pH 和 MnO_2 表面特性影响很大. pH 的升高会促进 MnO_2 表面官能团和有机物的电离 ,不利于表面络合物的形成 ,因而降低了 MnO_2 催化 $KMnO_4$ 氧化降解有机物的能力. 而 MnO_2 颗粒尺寸变大降低了表面活性位的数量也相应的减弱了 MnO_2 的催化能力. #### 参考文献: - [1] Waldemer R H, Tratnyek P G. Kinetics of contaminant degradation by permanganate [J]. Environmental Science and Technology, 2006, 40: 1055-1061. - [2] Yan Y E, Schwartz F W. Kinetics and mechanism for TCE oxidation by permanganate [J]. Environmental Science and Technology, 2000, 34: 2535-2541. - [3] Kim K, Gurol M D. Reaction of nonaqueous phase TCE with permanganate [J]. Environmental Science and Technology, 2005, 39: 9303-9308. - [4] Lee E S, Seol Y, Fang Y C, et al. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene [J]. Environmental Science and Technology, 2003, 37: 2540-2546. - [5] 李圭白,杨艳玲,李星,等.锰化合物净水技术[M].北京:中国建筑工业出版社,2006. - [6] Walker H W, Bob M M. Stability of particle flocs upon addition of natural organic matter under quiescent conditions [J]. Water Research, 2001, 35(4): 875-882. - [7] Ma J , Graham N , Li G B. Effect of permanganate preoxidation in - enhancing the coagulation of surface water-laboratory case studies [J]. Journal of Water Supply: Research and Technology-AQUA, 1997, 46: 1-10. - [8] 李圭白,马军.高锰酸钾氧化法去除饮用水中微量的丙烯酰 胺[J].给水排水,1989,15(2):8-12. - [9] 李圭白,林生,曲久辉. 用高锰酸钾去除饮用水中微量有机物[J]. 给水排水,1989,15(6):7-11. - [10] 张锦,李圭白,马军,等. 高锰酸钾复合药剂去除水中微量 酚类化合物的效能研究[J]. 哈尔滨建筑大学学报,2001, 34(3):65-67. - [11] 李圭白,马军. 用高锰酸钾去除和控制受污染水源水中的致 突变物质 [J]. 给水排水,1992,18(2):15-48. - [12] 马军,李圭白,柏蔚华.高锰酸钾复合药剂预处理控制氯化 消毒副产物及致突变活性[J].给水排水,1994,**20**(3):5-7. - [13] Ma J, Granham N. Controlling the formation of chloroform by permanganate preoxidation-destruction of precursors [J]. Journal of Water Supply: Research and Technology-AQUA, 1996, 45: 308-315. - [14] Hunkeler D, Aravena R, Parker B L, et al. Monitoring oxidation of chlorinated ethenes by permanganate in groundwater using stable isotopes: laboratory and field studies [J]. Environmental Science and Technology, 2003, 37(4): 798-804. - [15] Yan Y E, Schwartz F W. Kinetics and mechanism for TCE oxidation by permanganate [J]. Environmental Science and Technology, 2000, 34(12): 2535-2541. - [16] Kim K, Gurol M D. Reaction of nonaqueous phase TCE with permanganate [J]. Environmental Science and Technology, 2005, 39(23): 9303-9308. - [17] 马军. 高锰酸钾去除与控制饮用水中有机污染物的效能与机理[D]. 哈尔滨:哈尔滨建筑工程学院,1990. - [18] Zhang H, Huang C H. Oxidative transformation of triclosan and chlorophene by manganese oxides [J]. Environmental Science and Technology, 2003, 37 (11): 2421-2430. - [19] Benschoten J E, Lin W, Knocke W R. Kinetic modeling of manganese (II) oxidation by chlorine dioxide and potassium permanganate [J]. Environmental Science and Technology, 1992, 26: 1327-1333. - [20] Jiang J, Pang S Y, Ma J. Oxidation of triclosan by permanganate (Mn(WI)): Importance of ligands and in situ formed manganese oxides [J]. Environmental Science and Technology, 2009, 43 (21): 8326-8331. - [21] Stone A.T. Reductive dissolution of manganese (III / IV) oxides by substituted phenols [J]. Environmental Science and Technology , 1987 , 21: 979-988.