限氧曝气实现亚硝酸型同步硝化反硝化的研究

曾 薇,张 悦,李 磊,王淑莹,彭永臻

(北京工业大学北京市水质科学与水环境恢复工程重点实验室,北京 100124)

摘 要: 在(19±1) ℃条件下,采用 SBR 工艺处理低碳氮比实际生活污水,没有外加有机碳源,通过限氧曝气实现了亚硝酸型同步硝化反硝化生物脱氮(simultaneous nitrification denitrification via nitrite,亚硝酸型 SND). 试验 结果表明 较长污泥龄下(50~66 d),通过控制曝气量使系统溶解氧处于较低水平,好氧末端 $\rho_{\rm D0}$ <2.0 mg/L,平 均 $\rho_{\rm D0}$ ≈0.65 mg/L 不仅可在常温条件下实现短程硝化 ρ (NO₂⁻ –N) / ρ (NO_x⁻ –N) 稳定在 95% 以上,而且可同时 在该好氧硝化系统中获得高效的反硝化效果,稳定运行后,经亚硝酸型 SND 途径的总氮去除率($E_{\rm SND}$) 平均为 52% 最高可以达到 63.1%. 试验分析表明 (低 $\rho_{\rm D0}$ 水平是实现亚硝酸型 SND 的关键因素,通过低 $\rho_{\rm D0}$ 影响硝化 菌群的构成、反硝化菌的缺氧微环境以及有机物和 ρ (NH⁴₄ –N) 的降解特性,促进了亚硝酸型 SND 的形成.

关键词: 亚硝酸型同步硝化反硝化; 亚硝化菌; 限氧; 续批式活性污泥 中图分类号: X 703.1 文献标志码: A 文章编号: 0254 - 0037(2010) 09 - 1263 - 08

同步硝化反硝化(simultaneous nitrification and denitrification SND) 是指硝化和反硝化反应在同一反应 器中、相同操作条件下发生的现象. 与传统生物脱氮工艺相比 SND 的优越性主要表现在缩短反应时间、 节省碳源、减小反应器容积和节省碱度等^[1-2]. 通过控制适当的运行条件,可在污水处理系统中强化 SND 以提高生物脱氮效率. 近年来,在传统 SND 基础上产生了亚硝酸型 SND 工艺,它是通过亚硝酸盐途径进 行的一种 SND 工艺,集合了短程硝化和 SND 工艺的优点,以其高效、节能的优势越来越受到人们的 重视^[3].

国内外对 SND 的机理进行了大量研究 形成了以"微环境理论"和"生物学理论"为主导的理论基础, 但对亚硝酸型 SND 的研究相对较少 到目前为止还没有形成主导理论^[4].目前关于亚硝酸型 SND 的研究 多集中在易于实现 SND 的生物膜系统^[5-7]和颗粒污泥系统^[8-0]等,普通絮状活性污泥系统中亚硝酸型 SND 的研究较少.

本文主要研究 SBR 普通絮状活性污泥系统中实现亚硝酸型 SND 的途径 ,重点讨论限氧曝气下的低溶 解氧(DO) 对亚硝酸型 SND 的影响 ,并对产生的亚硝酸型 SND 现象进行了机理分析 ,从而为低 ρ (C) / ρ (N) 的实际生活污水的强化脱氮提供依据.

1 材料与方法

1.1 污水及污泥

试验所用污水取自居民生活区的实际生活污水 ,属典型的低 ρ(C) /ρ(N) 废水 ,其水质指标如表 1 所 示. 接种污泥取自北京某城市污水处理厂二沉池回流污泥 ,属全程硝化污泥.

收稿日期: 2008-12-05.

基金项目:国家自然科学基金项目(50878005);北京市自然科学基金项目(8072005 & 102005);霍英东教育基金会高等院 校青年教师基金(121076).

作者简介: 曾 薇(1974—), 女, 黑龙江哈尔滨人, 副教授.

表1 试验进水水质 Table 1 Characteristics of the influent used in the experiments

	$ ho_{ m COD}$ /	$\rho(NH_4^+ -N) / \rho(NO_3^N) / \rho(NO_2^N) /$			лЦ	ρ(C) /	总碱度(CaCO ₃ 计) /
坝日	$(mg \cdot L^{-1})$	(mg•L ⁻¹)	(mg•L ⁻¹)	(mg•L ⁻¹)	pm	ho(N)	$(mg \cdot L^{-1})$
范围	$121\sim\!416$	54 ~ 78	0 ~ 0. 21	0 ~ 0. 09	7.46~8.01	1.89~2.51	455. 6 ~ 556
均值	188	65.6	0.15	0.08	7.61	2.05	521.9

1.2 试验装置

试验采用 SBR 反应器(见图 1). 该反应器由有 机玻璃加工而成 ,总有效容积为 11 L. 转子流量计调 节曝气量,保证反应器中溶解氧处于目标范围内. 通 过温控装置将反应器内水温控制在设定温度(19 ± 1)℃.

1.3 试验方案

反应器运行期间维持ρ_{MLSS}在3~3.5g/L,每天运行2~3个周期,每个周期包括瞬时进水、曝气、沉淀、 排水、闲置5个阶段,采用恒定供气的曝气方式. 试 验期间通过有规律的排泥控制泥龄在50~66 d. 试 验分4个阶段进行,各阶段每周期的曝气量、曝气时 间和运行天数如表2所示.

Fig. 1 Schematic diagram of SBR system

Table 2 Scheme of the experiments for partial intrincation at normal temperatures						
计心士安	曝气量/	每周期溶氧值 /(mg•L ⁻¹)		每周期曝气	运行时间/	周期/个
<u> </u>	(L•h ⁻¹)	溶氧范围	平均溶氧值	氧值 时间/h		
阶段 I	40	0.04 ~ 0.75	0.46	3	18	54
阶段 Ⅱ	40	0.04 ~0.88	0. 52	4	22	66
阶段Ⅲ	40	0.04 ~ 1.10	0. 59	5	20	60
阶段IV	40	0.04 ~1.71	0.62	实时控制	88	182

表 2 实际生活污水常温下实现短程硝化的试验方案 ble 2 Scheme of the experiments for partial nitrification at normal temperatures

1.4 分析方法

试验分析项目包括 ρ_{COD} 、 $\rho(NH_4^+ -N)$ 、 $\rho(NO_3^- -N)$ 、 $\rho(NO_2^- -N)$ 、 ρ_{TN} 、污泥沉降比(SV%)、 ρ_{MLSS} ,各项 水质指标的测定方法均根据国家环保局规定的标准方法^[11]. pH 和 ρ_{DO} 的检测采用德国 WTW Multi 340i 手提式在线检测仪. 使用奥林巴斯 BX51/52 显微镜及奥林巴斯 C –4040ZOOM 数码相机进行微生物相观 察. 试验运行 1 ~ 84 d 总氮去除率(E_{SND})为^[12]

$$E_{\rm SND} = 1 - \frac{\rho(\rm NO_x^- -N)}{\rho(\rm NH_4^+ -N)} \times 100\%$$

试验运行至第 85 d 后 ,无论是在硝化过程中还是最后出水 $\rho(NO_3^- -N)$ 均在 0.5 mg/L 以下 ,自此之 后忽略 $\rho(NO_3^- -N)$ 的存在 E_{SND} 为

$$E_{\rm SND} = 1 - \frac{\rho(\rm NO_2^- -N)}{\rho(\rm NH_4^+ -N)} \times 100\%$$

1265

其中 $\rho(NO_x^- -N)$ 为出水 $\rho(NO_3^- -N)$ 与 $\rho(NO_2^- -N)$ 之和; $\rho(NO_2^- -N)$ 为出水 $\rho(NO_2^- -N)$; $\rho(NH_4^+ -N)$ 为 硝化过程氧化的 $\rho(NH_4^+ -N)$.

采用荧光原位杂交(fluorescence in-situ hybridization, FISH) 方法对系统中的亚硝化菌(AOB) 和硝化菌(NOB) 进行半定量分析^[13].试验中所采用的 16S rRNA 寡核苷酸探针如表 3 所示.

	Table 5 105 TRIVA-targeteu oligonucieolude probes useu in tins study					
	arphi(甲酰胺) /%	荧光标记	检测目标			
EUB _{mix}	35	FITC	几乎全部 Eubacteria			
NSO1225	35	Cy3	Ammonia-oxidizing β -Proteobacteria			
Ntspa662	35	Cy3	Nitrospira			
NIT3	35	Cy3	Nitrobacteria			

表 3 试验中所采用的 16S rRNA 寡核苷酸探针

注: EUB_{mix}由 EUB338、EUB338 Ⅲ、EUB338 Ⅲ 按摩尔浓度比 1: 1: 1混合组成.

2 结果与讨论

2.1 限氧曝气下短程硝化的实现与稳定

图 2 所示为限氧曝气运行期间进出水 $\rho(NH_4^+ -$ N)、出水 ρ (NO₂⁻ –N) ρ (NO_x⁻ –N) 及 ρ (NH₄⁺ –N) 去 除率的变化曲线. 由于本试验水温较低, 接种污泥为 全程硝化污泥 而且进水 ρ(NH₄⁺ -N) 随机波动 絞难 实现短程硝化,所以在试验阶段Ⅰ、阶段Ⅱ和阶段Ⅲ 采用短周期定时控制曝气时间,曝气时间参照 pH 曲 线"氨谷"点进行保守设定(见表 2). 阶段 Ⅰ~Ⅲ期 间出水 $\rho(NH_4^+ - N)$ 并没有完全去除,但是随着曝气 时间由 3 h 增加到 4 h、5 h ,出水 ρ (NH₄⁺ -N) 逐步下 降 好氧阶段 $\rho(NH_{4}^{+} - N)$ 去除率不断提高. 由于所 用种泥为全程硝化污泥,因此在启动时几乎没有 $\rho(NO_2^- - N)$ 产生 $\rho(NO_2^- - N) / \rho(NO_x^- - N)$ 几乎为 0. 之后的近 30 d ρ(NO₂⁻ -N) /ρ(NO_x⁻ -N) 呈现出高低 起伏的不稳定变化趋势,说明在限氧曝气的条件下, 硝化菌活性逐渐受到抑制 但是此时的亚硝化菌还没 有获得完全的竞争优势. 试验运行至阶段Ⅱ的中后

期 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 呈稳定上升趋势,说明亚硝化菌的竞争优势在进一步强化. 阶段 III 的 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 达到 95% 随后在阶段 III 和阶段 IV 长期的限氧曝气控制下 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 最 终稳定维持在 95% 以上. 阶段 IV 利用 pH 曲线 "氨谷"点控制好氧曝气时间 $\rho(NH_4^+ -N)$ 几乎为 0. 而且参 见 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 的变化曲线可以看出,在这种控制方式下,短程硝化逐步趋于稳定 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 稳定维持在 95% 以上. 由此可见,采用限氧曝气控制低 ρ_{DO} 实现常温下短程硝化是可行 的 好氧阶段 0.11~1.8 mg/L 的 ρ_{DO} 水平可使硝化菌的代谢活性逐渐受到抑制,亚硝化菌的竞争优势逐渐 增强,长期运行可使硝化菌被淘汰,从而使系统维持稳定的短程硝化效果.

2.2 限氧曝气下的亚硝酸型 SND 现象

在限氧曝气实现短程硝化的过程中发现,好氧硝化反应阶段存在总氮(total nitrogen,TN)损失的现

象.图 3 所示为第 85 和第 139 d 跟踪监测的 2 个典型周期氮浓度的变化.图 4 所示为限氧曝气运行期间 好氧硝化阶段 ρ_{IN} 去除率的变化.

微生物同化作用合成自身细胞需要消耗少部分氮,但是本试验在较低温度下进行,微生物生长缓慢, 而且控制泥龄长达 50~66 d,有研究指出^[14] 在长泥龄系统中,污泥产率系数会降低,同化除氮能力下降, 所以本系统中通过微生物同化途径的总氮去除比例很低,将其忽略. 由图 3 可知,随着 $\rho(NH_4^+ -N)$ 的下 降 2 个周期的 ρ_{TN} 均出现了同步下降, $\rho(NH_4^+ -N)$ 的下降幅度要大于 ρ_{TN} ,这是由于本系统发生的并非 完全的 SND, 好氧阶段几乎完全去除 $\rho(NH_4^+ -N)$, ρ_{TN} 仍有剩余.

由图 4 可知,低氧运行的初始阶段,系统的 ρ_{TN} 去除率较低(0.74%~6.93%) 随着低氧运行,系统中的 ρ_{TN} 去除率呈上升趋势.参见图 4 出水 $\rho(NO_3^- -N)$ 的变化趋势,阶段 I 出水 $\rho(NO_3^- -N)$ 高低不稳,试验运行至第 35 d,出水 $\rho(NO_3^- -N)$ 开始转为下降趋势,对应此时的 ρ_{TN} 去除率曲线呈上升趋势,因此可以确定系统发生了亚硝酸型 SND 部分 ρ_{TN} 的去除是通过 $\rho(NO_2^- -N)$ 途径进行的.试验运行至第 85 d 之后,出水含有极少量的 $\rho(NO_3^- -N)$ (<0.5 mg/L),而且对第 85 d 和第 139 d 的周期跟踪监测(见图 3)也表明好氧阶段中没有或者仅有极少量的 $\rho(NO_3^- -N)$ (<0.5 mg/L)产生,可以说自此之后的 ρ_{TN} 去除几乎完全是通过 $\rho(NO_2^- -N)$ 途径.经计算表明 $\mathcal{E}\rho(NO_2^- -N)$ 途径的 ρ_{TN} 去除率平均 52% 最高达到 63.1%.

removal efficiencies in the effluent

2.3 限氧曝气下亚硝酸型 SND 的机理分析

与 SND 的机理相似,亚硝酸型 SND 同样可用 "微环境理论"和 "生物学理论"来解释. 无论是 "微环境 理论"还是 "生物学理论" ρ_{DO} 水平都是重要影响因素. 很多文献都已表明 $\mathcal{M} \rho_{DO}$ 是实现短程硝化和 SND 的重要条件^[1546] 在本研究中 限氧曝气下的低 ρ_{DO} 水平是实现亚硝酸型 SND 的关键因素.

2.3.1 低 *ρ*_{D0} 下亚硝化菌竞争优势的形成

亚硝酸型 SND 是以短程硝化途径进行的一种 SND 工艺. 已有研究表明 ,高温、高游离氨、低 ρ_{DO} 、合适的 pH 值和污泥龄 ,结合在线传感器实时控制有利于实现短程硝化. 本试验在常温下采用 SBR 系统处理 实际生活污水 ,在常温和低 ρ (C) / ρ (N) 的限制下 ρ_{DO} 的控制则起着至关重要的作用. 采用低 ρ_{DO} 基质限制 途径实现短程硝化的原理是: 亚硝化细菌比硝化细菌对氧有更强的亲和性 ,文献报道 AOB 的氧饱和常数 为 0. 25 ~ 0. 5 mg/L ,NOB 的氧饱和常数为 0. 72 ~ 1. 84 mg/L^[17] ,所以在低溶解氧环境中 ,亚硝化菌会优先 利用有限的 ρ_{DO} 取得优势生长 ,硝酸菌活性受到一定的抑制.

阶段性的 FISH 检测从分子生物学角度证实了这一结论(见表 4).在限氧曝气控制模式下,亚硝化菌 由最初的 1.98% 增至 10% 以上,而 NOB 的数量则由最初的 8% 减至 0.2% 以下,中后期亚硝化菌已成为 优势硝化菌群.

	Tuble 4 Tibli Senn quantinea	tion results for intrinying bacter	1 u 70
行为 计 日	AOD (NSO1225)	N	OB
75개ピ↑∓□□	AUB (NSU1225)	Nitrospira(Ntspa662)	Nitrobacteria(NIT3)
接种污泥	1.98 ± 0.21	8 ± 0. 63	0.625 ± 0.28
阶段I末期	4.36 ± 0.74	5.35 ± 0.52	未检出
阶段Ⅱ末期	9.97 ± 1.01	0.49 ± 0.17	未检出
阶段Ⅲ末期	10.13 ± 0.93	< 0. 2%	未检出
阶段Ⅳ末期	10.9 ± 0.54	< 0. 2%	未检出

表4 不同阶段活性污泥中硝化菌群的相对含量(硝化菌群数量/总菌群数量) Table 4 FISH semi-quantification results for nitrifying bacteria

2.3.2 限氧控制下反硝化菌缺氧微环境的改善

考虑到反硝化速度比亚硝化速度快得多,亚硝酸盐型 SND 顺利实现的关键是在促进短程硝化作用的同时保持反硝化作用. 亚硝化细菌为好氧菌,氧饱和常数为0.25~0.5 mg/L ,传统的反硝化细菌属兼性厌氧菌,分子氧对反硝化有抑制作用. 亚硝化细菌和反硝化细菌对氧的不同适应性限制了亚硝酸盐型 SND 的进行. 本试验系统中 缺氧微环境的存在可解决这一问题,使短程硝化和反硝化同时发生.

首先,限氧曝气模式决定了缺氧微环境的存在.系统运行时,采用手提式在线 DO 检测仪在好氧阶段的测量显示,当 ρ_{D0} 在0.3~0.54 mg/L,普通絮状污泥 ρ_{MLSS} 为3200 mg/L以上时,缺氧区域就会形成.

其次,长 SRT 运行下的大团絮体促进了缺氧微 环境的形成.试验在限氧条件以及长 SRT 下运行,系 统中逐渐形成明显的大团活性污泥絮体(见图 5). 分析其原因是由于在长 SRT 系统中,污泥产率降低, 系统残存的无机物及生物惰性物质,及聚羟基丁酸酯 (PHB)、聚磷酸盐等非基质内储物,使活性污泥更容 易形成絮凝体^[14].此外,试验初期,由于限氧运行, 系统曾有2周时间出现过轻微的污泥膨胀现象,随后 好转,导致污泥膨胀的少量丝状菌可作为骨架促进絮 凝体的形成.活性污泥絮凝体的形成可改善缺氧微

图 5 活性污泥絮体的显微照片 Fig. 5 Micrographs of the activated sludge flocs

0%

环境 使通过 SND 脱氮途径的总氮去除比例有所提高.有研究^[18]指出,活性污泥絮体平均粒径由40 μm 变为80 μm 时,总氮去除率由21%增为52%.因此本试验系统中形成的这种大而密实的絮体结构为亚硝酸型 SND 的顺利进行创造了良好的微环境.

2.3.3 低 ρ_{DO} 下有机物和 ρ (NH₄⁺ –N) 的降解特性对反硝化的促进

反硝化细菌大都是异养菌 ,需从有机物的氧化过程中获取能量 ,将 $\rho(NO_2^- -N)$ 或 $\rho(NO_3^- -N)$ 作为无 氧呼吸时的电子受体. 因此 ,有机物浓度或 $\rho(C) / \rho(N)$ 参数直接影响着(亚硝酸盐型) SND 效率. 试验用 水为实际生活污水 $\rho(C) / \rho(N)$ 范围为 1.89 ~ 2.51 ,平均值仅有 2.05 ,属于典型的低 $\rho(C) / \rho(N)$ 废水 ,有 限的有机碳源在一定程度上限制了亚硝酸盐型 SND 的实现.

分别对 $\rho_{\rm D0} = 2 \text{ mg/L}$ 以及 $\rho_{\rm D0} = 0.5 \text{ mg/L}$ 下有机物、 ρ (NH⁺₄ –N) 和 $\rho_{\rm TN}$ 的降解特性进行了研究(见图

图 6 不同 ρ_{DO} 下 ρ_{COD} , ρ (NH⁺₄ -N)和 ρ_{TN} 的降解特性 Fig. 6 Variations of ρ_{COD} , ρ (NH⁺₄ -N), ρ_{TN} at $\rho_{\text{DO}} = 2 \text{ mg/L}$ and $\rho_{\text{DO}} = 0.5 \text{ mg/L}$

6).参见图 6(a) 图 对照 2 个 ρ_{D0} 水平下的 ρ_{COD} 曲线和 ρ_{COD} 二次模拟曲线可知 ρ_{D0} = 0.5 mg/L 时有机物的 氧化速率明显低于 ρ_{D0} = 2 mg/L 的状况.由图 6(b) 可以看出 ρ_{D0} = 0.5 mg/L 时的 ρ_{TN} 下降幅度要明显大 于 ρ_{D0} = 2 mg/L 的状况.图 6(c) 进一步分析了 2 个 ρ_{D0} 水平下第 *i* 个小时末的 ρ_{TN} 去除率 ,可以看出 ,第 1 h 末时 ρ_{D0} = 0.5 mg/L 的 ρ_{TN} 去除率为 14.9% ,而 ρ_{D0} = 2 mg/L 的 ρ_{TN} 去除率仅占 2.5%.第 1 h 之后的阶段 中 ρ_{D0} = 0.5 mg/L 的 ρ_{TN} 去除率为 41.8% ρ_{D0} = 2 mg/L 的 ρ_{TN} 去除率为 33.2%.而且对比 ρ_{COD} 和 $\rho(NH_4^+ - N)$ 的降解曲线可以发现 ρ_{D0} = 2 mg/L 时 ρ_{COD} 降解先于 $\rho(NH_4^+ - N)$ 氧化 反应开始后 1 h 内大部分 ρ_{COD} 已 被降解 $\rho(NH_4^+ - N)$ 氧化却并不明显. ρ_{D0} 为 0.5 mg/L 时 ρ_{COD} 降解和 $\rho(NH_4^+ - N)$ 氧化同时发生 反应开始 后 ρ_{COD} 和 $\rho(NH_4^+ - N)$ 同时开始下降.

分析低 ρ_{DO} 下有机物和 $\rho(NH_4^+ - N)$ 的降解特性对反硝化的促进作用 原因有以下 3 点:

1) 低 ρ_{DO} 下 ,反硝化自好氧反应开始即在进行 ,此时 $\rho(NH_4^+ - N)$ 氧化为 $\rho(NO_2^- - N)$,为反硝化反应提 供电子受体 ,易生物降解有机物大量存在 ,为反硝化反应提供可利用的碳源;

2) 在恒定曝气量的控制下 反应初期的 ρ_{DO}水平相对整个周期来说是最低的 反硝化菌的代谢活性最强 这些促进了反应初期好氧反硝化的进行;

3) 低 ρ_{D0} 下有机物的氧化速率变慢 ,为反应阶段中后期节省了部分碳源 ,有利于亚硝酸盐型 SND 的 进行. 而在较高 ρ_{D0} 下 ,反应初期以快速的有机底物降解为主 , $\rho(NH_4^+ - N)$ 极少被氧化 ,系统中缺乏 $\rho(NO_2^- -N)$ 底物 ,即使在缺氧、有机碳源丰富的系统中也不可能发生反硝化 ,因此 $\rho(NH_4^+ -N)$ 和 ρ_{TN} 都没 有下降. 而且高 ρ_{D0} 下 ,有机物的降解速率较快 ,在 $\rho(NH_4^+ -N)$ 氧化前即完成了大幅度降解 ,这对于本身 碳源就缺乏的低 $\rho(C)$ / $\rho(N)$ 生活污水的后续反硝化非常不利.

3 结论

1) 采用 SBR 反应器处理低 ρ (C) ρ (N) 实际生活污水 控制泥龄在 50 ~ 66 d 限氧曝气的条件下可实

现短程硝化,并且可同时获得高效的好氧生物脱氮效果 稳定后经亚硝酸型 SND 去除的总氮可占到 52% 左右,最高可以达到 63.1%.

2) 在(19 ± 1) ℃ 的条件下 通过控制曝气量为 40 L/h 使系统溶解氧处于较低水平 ρ_{D0} < 0.8 mg/L 结 合在 pH "氨谷"点前及时停止曝气的短周期定时控制 强化 AOB 的竞争优势. 历经 60 d、180 个周期的运 行可以在全程硝化污泥系统中成功启动短程硝化 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 稳定维持在 95% 以上. 短程 硝化成功启动后 通过好氧硝化时间的过程控制 ,可稳定维持短程硝化效果 $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ 高 于 95% $\rho(NH_4^+ -N)$ 去除率达到 97% 以上.

3) 在没有外加反硝化碳源的基础上 ,低 ρ_{DO}水平是实现亚硝酸型 SND 的关键因素. 低 ρ_{DO}促进了亚硝 化菌竞争优势的形成 ,改善了适宜反硝化菌生长代谢的缺氧微环境 ,同时低 ρ_{DO}影响有机物和氨氮的降解 速度 ,为反硝化创造有利条件.

参考文献:

- [1] 张可方,杜馨,张朝升,等. DO C/N 对同步硝化反硝化影响的试验研究[J]. 环境科学与技术,2007,30(6): 3-5. ZHANG Ke-fang, DU Xin, ZHANG Chao-sheng, et al. Influences of DO and C/N on simultaneous nitrification and denitrification [J]. Environmental Science & Technology, 2007, 30(6): 3-5. (in Chinese)
- [2] POCHANA K, KELLER J, LANT P. Model development for simultaneous nitrification and denitrification [J]. Water Science and Technology, 1999, 39(1): 235-243.
- [3] 吕锡武. 同时硝化反硝化的理论和实践[J]. 环境化学,2002,21(6): 564-570.
 LÜ Xi-wu. The theory and practice of simultaneous nitrification and denitrification [J]. Environmental Chemistry, 2002,21 (6): 564-570. (in Chinese)
- [4] 王建龙,彭永臻,王淑莹,等.复合生物反应器亚硝酸型同步硝化反硝化[J].北京工业大学学报,2007,33(12): 1310-1314.

WANG Jian-Jong, PENG Yong-zhen, WANG Shu-ying, et al. Simultaneous nitrification and denitrification via nitrite in a sequence hybrid biological reactor [J]. Journal of Beijing University of Technology, 2007, 33(12): 1310-1314. (in Chinese)

- [5] WEN Qin-xue, CHEN Zhi-qiang, SHI Han-chang. T-RFLP detection of nitrifying bacteria in a fluidized bed reactor of achieving simultaneous nitrification-denitrification [J]. Chemosphere, 2008, 71(9): 1683-1692.
- [6] LEONIDIA M C D, ELOISA P, EUGENIO F, et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor [J]. Bioresource Technology, 2009, 100(3): 1100-1107.
- [7] VILLAVERDE S, FDZ-POLANCO F, GARCIA-ENCINA P A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters. Start-up influence [J]. Water Res, 2000, 34: 602-610.
- [8] TSUNEDA S, OHNO T, SOEJIMA K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate accumulating organisms in a sequencing batch reactor [J]. Biochem Eng J, 2006, 27: 191-196.
- [9] 卢姗,季民,王景峰,等.颗粒污泥 SBR 处理生活污水同步除磷脱氮的研究[J].环境科学,2007,28(8): 1687-1692.

LU Shan, JI Min, WANG Jing-feng, et al. Simultaneous phosphorus and nitrogen removal of domestic sewage with aerobic granular sludge SBR[J]. Environmental Science, 2007, 28(8): 1687-1692. (in Chinese)

- [10] TERADA A, HIBIYA K, NAGAI J, et al. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment [J]. Journal of Bioscience and Bioengineering, 2003, 95(2): 170-178.
- [11] 国家环境保护总局. 水和废水监测分析方法 [M]. 第3版. 北京: 中国环境科学出版社, 2002: 252-266.
- [12] THIRD K A, BURNETT N, CORD-RUWISCH R. Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology and Bioengineering, 2003, 83: 706-720.
- [13] 曾薇,杨庆,张树军,等.采用FISH、DGGE和Cloning对短程脱氮系统中硝化菌群的比较分析[J].环境科学学报,2006,26(5):734-739.
 ZENG Wei, YANG Qing, ZHANG Shu-jun, et al. Analysis of nitrifying bacteria in short-cut nitrification-denitrification

processes by using FISH, PCR-DGGE and Cloning [J]. Acta Scientiae Circumstantiae, 2006, 26(5): 734-739. (in Chinese)

[14] 吉芳英,肖铁岩,罗固源. 侧流除磷 ERP-SBR 新工艺中生物脱氮及影响因素研究 [J]. 环境污染治理技术与设备,2006(7):24.
 JI Fang-ying, XIAO Tie-yan, LUO Gu-yuan. Influencing factors of biological nitrogen removal in the dypass phosphorus-

removal ERP-SBR[J]. Techniques and Equipment for Enviponmental Pollution Control, 2006(7): 24. (in Chinese)

- [15] GARRIDO J M, VAN BENTHUM W A J, VAN LOOSDRECHT M C M, et al. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor [J]. Biotechnol Bioeng, 1997, 53: 168–178.
- [16] PPLLICE A, TANDOI V, LESTINGI C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate [J]. Water Research, 2002, 36(10): 2541-2546.
- [17] FUX C, BOEHLER M, HUBER P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant [J]. Journal of Biotechnology, 2002, 99(3): 295– 306.
- [18] 王弘宇,马放,周丹丹. 同步硝化好氧反硝化生物脱氮机理分析及其研究进展[J]. 四川环境,2004,23(6): 62-65. WANG Hong-yu, MA Fang, ZHOU Dan-dan. The mechanism and research progress of synchronous nitrification and aerobic denitrification in biological nitrogen removal [J]. Sichuan Environment, 2004, 23(6): 62-65. (in Chinese)

Simultaneous Nitrification Denitrification via Nitrite Under Limited Aeration

ZENG Wei , ZHANG Yue , LI Lei , WANG Shu-ying , PENG Yong-zhen

(College of Environmental and Energy Engineering , Beijing University of Technology , Beijing 100124 , China)

Abstract: At normal temperature of (19 ± 1) °C , without the addition of external carbon sources , simultaneous nitrification denitrification via nitrite (SND via nitrite) was studied in a lab-scale SBR treating domestic wastewater with low ratio of carbon to nitrogen. The results showed that under the long sludge retention time (SRT) of 50 ~ 66 d and limited aeration with the maximum ρ_{D0} below 2. 0 mg/L and the average ρ_{D0} of 0. 65 mg/L, partial nitrification to nitrite was successfully achieved with $\rho(NO_2^- -N) / \rho(NO_x^- -N)$ over 95%. Moreover, denitrification occurred during the above aerobic nitrification phase. The average ρ_{TN} removal efficiency by SND via nitrite maintained 52%, and the maximum was up to 63. 1%. The low ρ_{D0} concentration under limited aeration is the key factor to achieving SND via nitrite. Under a long time operation with low ρ_{D0} concentrations, the altering of nitrifying communities , micro-environment for denitrifiers growth and biodegradation characteristics of ρ_{COD} and $\rho(NH_4^+ -N)$ promoted the occurrence of SND via nitrite.

Key words: simultaneous nitrification denitrification (SND) via nitrite; ammonia oxidizing bacteria (AOB); limited aeration; sequence batch reactors

(责任编辑 苗艳玲)