基于 ASM₂ 的快速易生物降解 COD 组分表征方法构建

艾海男¹ 张代均^{2 3} 何 强¹ 卢培利^{1 2}

(1.重庆大学三峡库区生态环境教育部重点实验室,重庆400030; 2.重庆大学环境科学系,重庆400030;3.重庆大学西南资源开发及环境灾害控制工程教育部重点实验室,重庆400030)

摘 要 基于活性污泥 2 号模型(ASM₂) 对快速易生物降解组分(S_s) 进一步划分为可发酵的易生物降解有机物(S_F) 和发酵产物(S_A) 本研究提出了一套科学的表征方法。该方法涉及 S_s 与 X_s (慢速可生物降解组分) 的好氧呼吸测量同时 表征、 S_A 组分的离子色谱测定以及物料衡算。应用这套方法对重庆市某 2 个城市污水厂隔栅井出水水样平行进行了 4 组 实验 各种组分测量值序列的 CV 值在 2.09% ~6.18% 之间。

关键词 ASM₂ 呼吸速率测量 离子色谱 表征方法

中图分类号 X703 文献标识码 A 文章编号 1673-9108(2011) 09-2005-04

Construction of the characterization method for rapid biodegradable COD component based on ASM₂

Ai Hainan¹ Zhang Daijun^{2,3} He Qiang¹ Lu Peili^{1,2}

(1. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education ,

Chongqing University, Chongqing 400030, China;

2. Department of Environmental Science , Chongqing University , Chongqing 400030 , China;

3. Key Laboratory for the Southwest China Resources' Exploitation and Environmental Disaster

Control Engineering , Ministry of Education , Chongqing University , Chongqing 400030 , China)

Abstract A set of scientific characterization method was proposed in this paper based on that the rapid biodegradable component(S_s) was further divided into fermentable rapid biodegradable component(S_r) and ferment production component(S_a) in ASM₂. In this set of method the simultaneous characterization of S_s and X_s by hybrid respirometer , characterization of S_a by ion chromatogram and the material balance method were involved. This method was applied to wastewater samples from the grille well of two different WWTPs in Chongqing and for each sample 4 parallel experiments was carried out , and the CV of the measured value sequences were between 2.09% ~ 6.18%.

Key words ASM₂; respirometry; ion chromatogram; characterization method

为了更好地描述生物除磷过程,国际水协 (IWA)提出的活性污泥2号模型(ASM₂)将快速易 生物降解组分(S_s)进一步划分为可发酵的易生物 降解有机物(S_r)和发酵产物(S_A)^[1]。作为模型应 用的必要输入条件, S_A 组分在ASM_s所有的化学计 量学计算中被假定为乙酸,实际上也表示了所有其 他发酵产物,而对 S_F 组分的定义则是可由异氧菌直 接降解的发酵基质,因此它不包含 S_A 组分。

目前,国内外对发酵产物S_A的表征方法已有相 关报道^[2,3](如蒸馏法、比色法、色谱法和滴定法 等)而发酵是至今仍未研究透彻的一个过程,关于 这一过程的动力学知之甚少,对S_F的表征方法尚未 取得很好的突破,因此,目前对 S_F 的表征主要是通 过测定 S_s 组分以及 S_A 组分,然后通过物料衡算最 终求解 S_F 组分,因此,对废水中 S_s 的科学表征是进 一步表征 S_A 与 S_F 的首要前提。对废水中 S_s 的表 征目前应用最为广泛的是呼吸速率(oxygen uptake utility ,OUR) 测量法,但对于真实城市废水的 OUR 测量,所得 OUR 曲线同时包含了 S_s 与 X_s (慢速可

基金项目:国家自然科学基金资助项目(50578166);国家"水体污染 控制与治理"科技重大专项(2009ZX07315-02)

收稿日期:2010-01-06;修订日期:2010-07-05

作者简介: 艾海男(1982~),男,博士,主要从事废水处理理论与技 fishing House. All rights reserved. http://www.cnki.n 术研究工作。E-mail: aihainan@126.com 生物降解组分) 的降解信息,因此,如何将所得 OUR 曲线科学、准确地分解成 $S_s = X_s$ 降解曲线,从而求 解出 S_s 的浓度是进一步求解 S_F 组分的关键问题。 对于包含 $S_s = X_s$ 同时降解的 OUR 曲线的分段目 前主要还是以采用人为判断的方法^[4,5] 为主。尽管 有研究通过优化实验条件来获得分段明显的 OUR 曲线^[6,7],以便于判断 S_s 降解终点,但仍不能解决该 方法存在的主观性问题。Tobajas 等^[8]提出运用循 环计算的方法来确定废水中 $S_s = X_s$ 的初始浓度以 及这 2 种组分的降解动力学参数,但其复杂程度大 大影响了该方法的适用性。

本课题组利用自行研制开发的混合呼吸仪对废 水进行全呼吸速率测量,获得包含 S_s 降解、 X_s 降解 以及内源呼吸的全 OUR 曲线。根据获得的 OUR 曲 线,利用适当的数学方法和数学模型进行曲线的解 析,提出了一种呼吸速率测量同时表征废水 S_s 和 X_s 的方法^[9],在此基础上结合 S_A 组分的离子色谱 测定,求解出 S_F 组分,最终实现了基于 ASM_2 组分 划分的 S_s 组分的科学表征。

1 材料和方法

1.1 实验材料与设备

呼吸速率测量实验在本实验室自行开发的混合 呼吸速率测量仪中进行,废水来源于重庆市某A、B 2个城市污水处理厂隔栅井出水,污泥来源于该2 个污水处理厂曝气池出口混合液。20g/L的ATU 用于抑制可能存在的硝化反应2mol/L的HCl和 NaOH用于调节水样pH值。S_A组分的测试应用美 国戴安公司产DX-120型离子色谱,其配备其配备 ICE-AS6(9×250mm)型离子排斥分析柱、AMMS-ICE型化学再生抑制器及电导检测器0.4 mmol/L 七氟丁酸作为淋洗液5 mmol/L四丁基氢氧化铵为 再生液。离子色谱测定过程中所用溶液均为电阻率 为18.2 MΩ•cm的超纯水。

1.2 实验方法

1.2.1 呼吸速率测量方法

在进行呼吸速率测量实验之前,先将污泥浓缩、 洗涤,放入混合呼吸仪中空曝,然后取原污水2500 mL,注入混合呼吸仪并定容至5000 mL。采用磁力 搅拌将污水与污泥充分混合。调节 pH 为7.8± 0.2 投加 ATU 贮备液至20 mg/L,温度控制在25 ℃ 整介呼吸速率测量实验约耗时350 min.左右。Pu 1.2.2 离子色谱测量方法

离子色谱测定 S_A 组分 ,色谱条件的选择对测定 结果的准确性有较大影响。在本实验测定过程中, 淋洗液七氟丁酸的浓度及流速和可优化测定结果的 乙腈占淋洗液的体积分数是影响最终测定结果的 3 个最重要的因素。因此 ,在应用离子色谱测定真实 废水之前 ,本实验采用色标级的乙酸与丙酸 ,同时设 计了正交实验方法来确定最佳的实验条件。最终确 定色谱条件为:淋洗液浓度及乙腈的体积分数: 0.4 mmol/L 七氟丁酸-乙腈(97:3,v/v);再生液:5 mmol/L 四丁基氢氧化铵(TBAOH);淋洗液流速: 1 mL/min。

由于 S_A 组分易被微生物降解,因此,样品采样 带回实验室后按照呼吸实验时间同步取出足够水样 用 0.45 μm 孔径的醋酸纤维滤膜过滤,然后放进冰 箱冷藏柜中冷藏待测(保持温度 4 °C),样品采集和 检测应尽量在 24 h 内进行。

1.3 S_s 与 X_s 降解曲线解析方法简述

一个水样完整的 OUR 测量,所得的曲线理论上 包含 3 个阶段: I 段为 S_s 、 X_s 降解的外源 OUR (OUR_{ex})与内源 OUR(OUR_{en})的叠加; II 段为仅包 含 X_s 降解的 OUR_{ex}与 OUR_{en}的叠加; II 段为外源基 质消耗完毕,仅有 OUR_{en}。由于内源呼吸存在于整 个呼吸测量过程中,因此,对内源呼吸速率的剔除是 解析 OUR 曲线的第一步。全 OUR 曲线剔除 OUR_{en} 后获得 S_s 和 X_s 降解的外源 OUR。由于 S_s 与 X_s 2 种组分在降解速率上存在着数量级上的差别^[10],因 此,理论上通过两者的降解动力学是可以将包含 2 种组分的 OUR 曲线分解开来的。在区分了 2 种组 分的降解曲线后,最终可以求得原污水中 2 种组分 各自的含量。

具体的解析方法及过程,可参见文献[9]。 **1.4** S_F组分的求解 S 组分量终可运用公式(1)进行物料;

 S_{F} 组分最终可运用公式(1)进行物料衡算 求解。

$$S_{S} = S_{A} + S_{F}$$

$$S_{F} = S_{S} - S_{A}$$
(1)

2 结果与讨论

对来自 $A_sB 2$ 个污水处理厂的同一水样平行 试验 4 组,每组实验的测量顺序为:首先取水样按照 实验方法进行 OUR 测量以解析 $X_s 与 S_s$ 组分,同步 将同一时刻水样用于 S_A 组分的离子色谱测定。最

2007

终得到 2 个水样 4 组实验的 $S_s X_s S_A$ 以及通过物 料衡算求解得出的 S_F 组分浓度,并将各个组分的 4 组实验结果均值和序列的 CV 值列入表格下方,具 体结果如表 1 和表 2 所示。图 1 为一个水样的 S_A 组分测量色谱出峰图。

表1 污水厂A废水中各组分浓度

 Table 1
 Concentrations of components in wastewater from WWTP A

组分	:	组分浓度	£ (mg/L)	计算结果		
名称	1	2	3	4	平均值(mg/L)	CV(%)
S_{S}	58.4	56.6	54.8	53.5	55.8	3.31
X_S	102.2	107.4	114.3	109.7	108.4	3.84
$\mathbf{S}_{\mathbf{A}}$	49.3	47.2	45.5	44.6	46.7	4.02
$\mathbf{S}_{\mathbf{F}}$	9.1	9.4	9.3	8.9	9.2	2.09

表2 污水厂 B 废水中各组分浓度

 Table 2
 Concentrations of components in

wastewater	from	WWTP	B
------------	------	------	---

组分					计算结果	
名称	1	2	3	4	平均值(mg/L)	CV(%)
S_S	38.6	36.3	34.4	33.2	35.6	5.73
X_S	82.1	87.2	86.6	88.4	86.1	2.77
$\mathbf{S}_{\mathbf{A}}$	32.5	30.8	29.2	27.5	30.05	6.18
S_{F}	6.1	5.5	5.2	5.7	5.57	5.81

图1 一个水样的色谱图

Fig. 1 Chromatogram of a water sample

尽管在城市废水中同时包含 S_s 与 X_s 组分,通 过好氧呼吸速率测量所得到的 OUR 曲线也同时包 含了这 2 种组分的降解信息,但根据活性污泥系列 模型(ASM_s)中对这 2 种组分降解动力学的描述,其 降解速率上的数量级差异应该成为科学表征这 2 种 组分的突破点。由实验结果可知,利用本方法对 S_s 与 X_s 组分的表征,对于同一水样平行实验所得的 该 2 种组分的结果相差不大,如 S_s 组分测量结果最 大差距在 2.3 mg/L,最小在 1.2 mg/L,并且,通过 表 1 和表 2 可以看出 2 组实验的 X_s 组分测量结果 均没有任何规律性 ,且 2 个序列的 CV 值较小为 3. 84% 和 2. 77% ,这表明本文所采用的 OUR 曲线 ASM_s 解析法求解 S_s 、 X_s 组分不存在有方法本身的 系统缺陷 ,仅与测试过程中的仪器及人为操作误差 有关。这是建立这套表征方法的必要前提。

2 个水样的 4 组平行实验中,最大 CV 值为 6.18% 出现在 S_A 组分测量值序列,主要有 2 个原 因,其一是由于 S_A 组分属于易挥发物质,尽管 4 次 实验先后相隔时间不长(在 5 h 左右),但仍然造成 了后续被测水样中 S_A 组分少量的挥发;其二、尽管 实验采取了诸如冰冻、缩短测量间隔时间等办法,但 废水中微生物的存在也导致了 S_A 组分被少量降解。 4 组实验所得 S_s 组分浓度随测量时间的延后逐渐 递减也说明了这一点。因此,在使用该套方法进行 废水可生物降解 COD 组分表征时,一定要注意水样 的保存方法。但总体来说 2 组实验所得 4 种组分测 量序列的 CV 值均控制在 2.09% ~ 6.18% 之间,说 明了整套方法的精确性较高。

从图 1 可以看出 在加入 3% 的乙腈的情况下, 应用离子色谱测定废水中 S_A 组分得到了较好的色 谱图,乙酸的出峰时间在 11~12 min,丙酸的出峰时 间在 18~19 min,分离效果良好,保证了所求得 S_A 组分的准确性。对于众多 S_A 的表征方法而言,离子 色谱测定法无疑是最为精确的方法之一,且离子色 谱测量时,色谱条件的选择也非常重要,对于不同的 离子色谱仪测定不同的物质首先必须通过实验确定 其最佳色谱条件以求得到最准确的测试结果。但离 子色谱测量法投资较大,操作要求较高的特点也使 得这种方法在城市污水厂及相应科研机构的普遍适 用性大打折扣。因此,开发出简易、快速适用性较高 的 S_A 组分表征方法成为 ASM_S 广泛应用而亟待解 决的问题之一。

3 结 论

本研究基于 ASM_2 根据除磷脱氮要求对快速易 降解组分(S_s) 进一步划分为可发酵物质(S_F) 与发 酵产物(S_A) 提出了一套表征方法。该方法首先利 用 S_s 与慢速可生物降解组分(X_s) 在降解速率上的 差异 ,实现了好氧呼吸速率测量(OUR) 同时表征这 2 种组分 ,在此前提下结合测量精确度较高的离子 色谱法对 S_A 组分进行测定 最终通过物料衡算求得 S_F 组分 最终实现了这 3 种组分的科学表征。实验 结果表明,这套方法具有较好的精确性,为ASM_s的 应用与推广奠定了一定的基础。

参 考 文 献

- [1] 张亚雷,李咏梅,译.活性污泥数学模型.上海:同济大 学出版社,2002
- [2] Lahav O., Morgan B. E., Loewenthal R. E. A rapid simple and accurate method for measurement of VFA and carbonate alkalinity in anaerobic reactors. Environmental Science & Technology, 2002, 36(6): 2736-2741
- [3] 刘建华,郭洪光,刘艳君. 气相色谱法测定工业废水厌氧
 反应中的挥发性脂肪酸. 长春师范学院学报(自然科学版) 2005 24(3):42-43

Liu Jianhua , Guo Hongguang , Liu Yanjun. Gas chromatography for assaying VFA contained in anaerobic reaction of industrial sewage. Journal of Changchun Teachers College , **2005** 24(3):42-43(in Chinese)

- [4] Lagarde F. ,Tusseau Vuillemin M. H. ,Lessard P. , et al. Variability estimation of urban wastewater biodegradable fractions by respirometry. Water Res. 2005 39(19):4768– 4778
- [5] 郝晓地,宋虹苇,胡沅胜,等.数学模拟技术应用中的污水水质(COD)特征化方法.中国给水排水,2007,23 (13):7-10

Hao Xiaodi Song Hongwei, Hu Yuansheng, et al. Method of wastewater characterization for COD in application of mathematical simulation technology. China Water & Wastewater , 2007 23(13):7-10(in Chinese)

- [6] 卢培利. 混合呼吸测量仪研制与活性污泥模型进水 COD 组分表征研究. 重庆: 重庆大学博士学位论文 ,2006. 108-102
 - Lu Peili. Development of hybrid respirometer and research on influent COD characterization of activated sludge models. Chongqing: Chongqing University **,2006**. 108-102 (in Chinese)
- [7] Mathieu S. , Etienne P. Estimation of wastewater biodegradable COD fractions by combining respirometric experiments in various S_0/X_0 ratios. Water Res. , **2000**, 34(4) : 1233-1246
- [8] Tobajas M., Garcia C. E. Comparison of analysis methods for determination of the kinetic parameters in batch cultures. Microbiology and Biotechnology 2000, 16(11):845– 851
- [9] 张代均,艾海男,卢培利,等. 混合呼吸仪同时表征废水 RBCOD 与 SBCOD 组分. 环境科学,2009,30(8):2293-2296

Zhang Daijun , Ai Hainan , Lu Peili , *et al.* Simultaneous chracterization of RBCOD and SBCOD in wastewater by hybrid respirometer. Environmental Science , **2009** ,30 (8) : 2293-2296(in Chinese)

[10] Rachel D., Eberhard M. The influence of particle size on microbial hydrolysis of protein particles in activated sludge. Water Res., 2006 40(5) : 2064-2074