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Abstract:  An effective approach for describing complicated water quality processes is very important for river water quality 
management. We built two artificial neural network (ANN) models, a feed-forward back-propagation (BP) model and a radial 
basis function (RBF) model, to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of 
Chongqing, P. R. China. Our models used the historical monitoring data of biological oxygen demand, dissolved oxygen, 
ammonia, oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that 
both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water 
quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the 
Yangtze River. Of the two ANN models, the RBF model calculates with a smaller mean error, but a larger root mean square error. 
More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality 
models. 
Keywords:  water quality modeling; Yangtze River; artificial neural network; back-propagation model; radial basis function 
model 
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1 Introduction a 

The Yangtze River, the largest in P. R. China and the 
third longest in the world, flows through 10 provinces 
and autonomous regions of China. It finally enters the 
East China Sea after running 6 300 km across a 
catchment of 1.8×106 km2 which covers one fifth of 
land area of P. R. China [1]. The Yangtze River 
provides drinking water for 500 million Chinese people 
and its watershed is home to approximately 40% of P. 
R. China’s GDP (gross domestic product). Considering 

                                                 
† GUO Jin-song (郭劲松): Guo0768@126.com;                            
Tel: +86-23-65120768.  

‡ LI Zhe (李哲): Lizhe1981@126.com, or ZheLi@cqu.edu.cn.  
∗ Funded by the Natural Science Foundation of China (No. 
59778021) 

the great significance of water resource utilization and 
ecological environment protection in the Yangtze River 
basin, the environmental protection framework of the 
Yangtze River [1] was set up early in 1970s, which 
included a water quality monitoring program, water 
quality management, and pollution control planning. 
As the significant basic work of water quality 
management, where the core issue is the environmental 
capacity calculation and waste loadings allocation of 
the Yangtze River basin, water quality models showing 
the fate and transport of contaminants in the Yangtze 
River are useful tools. 

Traditional mathematical modeling of water quality 
aims at explaining the fate of different pollutants in 
both water bodies and sediments with respect to 
advection, dispersion/diffusion and biogeochemical 
conversion through rough approximation of the real 
system [2]. This leads to large, comprehensive and 
often over-parameterized models difficult to identify 
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and with many uncertainties [3]. New modeling 
approaches, such as non-linear description of water 
processes, have become popular due to their 
performance in characterizing complex water quality 
processes with high accuracy. 

In contrast to the biogeochemical conversion process 
which is primarily considered in water quality 
modeling of small rivers, hydrological characteristics 
(advection, dispersion/diffusion, etc.) have been the 
focus of water quality modeling for the Yangtze River 
for decades. Two directions have attracted much 
attention: one is the application of advanced algorithms 
to solve the hydraulic partial differential equations 
under various boundary conditions of complexity; and 
the other aims to identify and calibrate parameters, 
especially those related to the advection and 
dispersion/diffusion process in water quality models. 
To date, there has not been a reported application of 
artificial neural network (ANN) models to the 
simulation of Yangtze River water quality. It is 
therefore worthwhile to try a new modeling approach 
based on artificial intelligence to simulate the water 
quality of the Yangtze River. 

In this work, we established two one-dimensional 
(1D) ANN models to represent quantitatively the 
relationships among major contaminants in the reaches  
of the Yangtze River and the Jialing River (a tributary 
of the Yangtze) passing through the city of Chongqing 
in the upper Yangtze basin. We concentrated on 
deriving deterministic quantitative relationships among 
the constituents between different cross sections for the 
two rivers without complex description of 
biogeochemical conversion processes in a water 
column, and comparing the performance of different 
models.  

2 Background and methods 

2.1 Study site 

Chongqing is a river-girdled city hemmed in 
between mountains, where an upper reach of the 
Yangtze River is joined by one of its major tributaries, 
the Jialing River. This study focused on the trunk 
streams of the Yangtze River and the Jialing River 
within the Chongqing Municipality. The length of 
Yangtze in the study area was 240.8 km from Yangshi 
in Jiangjin County to Huangcaoxia in Changshou 
District, flowing through 9 Chongqing Municipality 
districts. The maximum flow of the Yangtze through 

the Cuntan cross section was 85 700 m3/s, and the 
average annual flow was 11 308 m3/s [4]. The Jialing 
River travels 153.8 km in the Chongqing Municipality 
from Guanyinyan in Hechuan County to Daxigou in 
the Yuzhong District next to its confluence with the 
Yangtze at Chaotianmen. The maximum flow of the 
Jialing at Daxigou was 44 800 m3/s and average annual 
flow was 2 120 m3/s [4]. The Fujiang River is the 
largest tributary of the Jialing River. In the model, it 
was simplified as the largest point source of pollution 
into the Jialing. Fig. 1 shows a map of the study site 
and the cross sections to be calculated. Basic 
hydrological data of both rivers are shown in Table 1.  

Besides the complex hydrological characteristics of 
the two rivers, sewage discharge in the study area was 
rather complicated. The two rivers especially were 
contaminated traveling through the urban area. Major 
pollutants came from point sources of industrial and 
municipal wastewater, added to by the pollution loads 
from their tributaries and also non-point sources from 
agriculture and urban runoff [4]. 

 
 
 

 
 

Fig. 1   Map of the study site 
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2.2 Data source 

The Ministry of Water Resources and the State 
Environmental Protection Administration of P. R. 
China jointly initiated a long-term river water quality 
monitoring program for the Yangtze River basin in the 
1970s. The water quality data of the Yangtze and the 
Jialing Rivers used in this study were sourced from the 
monitoring program in 1989 [4], before the start of the 
Three Gorges Dam (TGD) Project, which reflected the 
original hydrological characteristics of both rivers 
before the interruption of TGD.  

Cross sections selected for the Yangtze River 
monitoring system in the city of Chongqing were at 
Yangshi, Baishatuo, Wanglongmen, Cuntan, Yuzui and 
Huangcaoxia, respectively; and those for the Jialing 
River system were at Guanyinyan, Beibei, Ciqikou and 
Daxigou (Fig. 1). Concentrations of major pollutants in 
the two rivers measured in February and August of 
1989 were used as typical data of flood season and 
drought season (Table 1 [4]). Biochemical oxygen 
demand (BOD), dissolved oxygen (DO), ammonia 
(NH3-N), oil and volatile phenolic compounds (Φ-OH) 
were selected as the water quality variables. 

3 ANN modeling  

3.1 ANN  

The ANN architecture is a massive parallel 
distributed information-processing system that has 
certain performance characteristics resembling 
biological networks of the human brain [5]. Back-
propagation (BP) is a type of ANN among the most 
researched and widely-used structures in hydrology and 
water-resource problems. It usually comprises three or 
more layers: an input layer, one or more hidden layers, 
and an output layer [6-7]. Each layer of BP neural 
networks is linked by weights that need to be 
determined through a learning algorithm [8]. The delta-
bar-delta (DBD) algorithm is an effective learning 
algorithm with a self-adapted learning rate and has the 
advantages of minimizing convergence time and 
diminishing local extremum vibration in BP neural 
networks [8]. 

To obtain fast convergence and avoid local vibration 
when processing a large number of samples in BP 
neural networks, a radial basis function (RBF) neural 

network model was developed [6]. The RBF 
architecture is similar to that of the BP, but uses a 
Gaussian Kernel function and consists of only three 
layers (see Fig. 3) while the BP consists of three or 
more layers. The RBF neural networks, in theory, 
provide an effective method for the learning (training), 
not only showing good performance in convergence, 
but also avoiding over-fitting. The learning of RBF 
neural networks is 103 to 104 times faster than that of a 
simple BP algorithm. The number of hidden neurons 
critically affects the performance of RBF neural 
networks, however [8-10]. 

3.2 Configuration of neural network models 

In this study, we built a BP-DBD neural network 
model and an RBF neural network model to simulate 
the water quality in different cross sections. Selection 
of indicative pollutants in water for both models 
followed the same procedure as in the traditional river-
water-quality model in Ref. [4]. River flow, pollutant 
retention time, point and non-point pollutant loadings, 
and upstream pollutant concentration are the most 
important factors influencing the water quality from the 
upstream cross section to downstream. As a result, the 
objective of the neural network model is to establish 
the functional mapping relationship between upstream 
and downstream cross sections, which can be described 
as 

(Sd) [(Su), ( , , , ), ( , )]f Q L B t q S= ,                              (1) 

where Sd is the output of the state variables of the 
model, i.e., the concentrations of DO, BOD, NH3-N, Φ-
OH and Oil, at downstream cross section; Su refers to 
the water quality at the upstream cross section, which is 
regarded as the initial boundary; Q, L, B and t are 
hydrological parameters of the system, with Q as the 
river flow in both flood season and drought season in 
1989, L the length of the segment, B the average width 
of the water surface and t the average retention time of 
constituents; q and S are the pollutant loading forcing 
functions in the river, with q as the input flow of a 
tributary and S the overall pollutant loading, including 
point source and non-point source in the segment 
during the periods of concern. Structures for BP-DBD 
and RBF are shown in Figs. 2 and 3. 
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 Output layer 

Hidden layer 

Input layer 

 
Fig. 2  Neural network model structure for BP-DBD (back probation−delta-bar-delta), where BOD is the biochemical oxygen 
demand;  DO the dissolved oxygen; NH3-N, the concentration of ammonia nitrogen; Oil, the concentration of oils; and Φ-OH, the 
concentration of volatile phenolic compounds; the subscript A refers to the variables in the input layer and the subscript B, the 
variables in the output layer 

 
 

 Output layer Hidden layer Input layer 

 
 

Fig. 3   Sketch of neural network model structure for radial basis function (RBF), where x1, x2, xi-1 and xi are the variables in the 
input layer, y1 and yj are the variables in the output layer; and z1, z2 and zk are the variables in the hidden layer 

 

 

Several segments in the Yangtze and Jialing Rivers 
were defined for simplifying the complexity of the 
physical boundaries of natural water bodies. Each 
segment was assumed to be of the same physical 

characteristics, including hydraulic gradient and 
boundary condition, but in modeling was regarded as 
an independent unit, linking end-to-end in series to 
create a single spatial step during the calculation of 
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water quality. 
In this study, the target sections of the Yangtze and 

Jialing Rivers were divided into 5 and 3 segments, 
respectively, based on the water quality monitoring 
data. Water quality at the upstream cross section in a 
segment, hydrological characteristics and pollutant 
loadings between two neighboring cross sections of 
one segment were regarded as the input of the neural 
network model, and the output was the water quality at 
the downstream cross section of the segment (see Fig. 
4). Sixteen groups of the water quality data samples 
and the hydrological characteristics in both flood 
season and drought season of the 8 segments are listed 
in Table 1. In these data samples, 3 groups were used 
for validation but not for training and parameter 
estimation, i.e., the data of the segment of the Yangtze 
River between Yangshi and Baishatuo in both flood 
and drought seasons and the data of the segment of the 
Jialing River between Ciqikou and Daxigou in the 
flood season, and the other 13 groups were used in the 
training for both BP-DBD and RBF neural network 
models. 
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Fig. 4  Segmentation of the Yangtze between Yangshi and 
Huangcaoxia and of the Jialing between Guanyinyan and 
Daxigou in ANN (artificial neural network) modeling 

 

3.3 Implementation and performance evaluation of 
the neural network models 

Both the BP-DBD and RBF neural network models 
of the reaches of the Yangtze and the Jialing passing 
through the city of Chongqing were implemented using 
Matlab 6.0 (www.mathworks.com). In the BP-DBD 
model, the initial weight matrix, the threshold matrix of 

the neural network, and the momentum factors were all 
set to equal 0.1.  

In the RBF neural network model, the number of 
neurons in the input layer was 15, the output layer had 
5 neurons, and the initial number of neurons in the 
hidden layer was set at 9. The first 4 training samples 
in Table 1 were used as the centers for RBF. The initial 
parameter in normalization was set at 0.1, and 
maximum number of iterative times was 1 000, the 
learning accuracy was set at 0.001, and other 
parameters in the neural network were set according to 
the defaults in Function Newrb in the Matlab tool box 
for neural network models.  

The simulation results of the BP-DBD and RBF 
neural networks were compared with traditional water 
quality modeling in Ref. [4]. Performance of these 3 
models were evaluated by 3 efficiency parameters: 
correlative coefficient (R2), the mean error (ME), i.e., 
the systematic difference between the estimated and 
measured data, and the measure of goodness-of-fit, root 
mean square error (RMSE) calculated by [11] 

1 1

1 ˆRMSE
M N

mn mn
m n

Y Y
MN = =

⎡ ⎤= −⎣ ⎦∑∑ ,                              (2) 

where M is the number of estimated output; N is the 
number of samples; Ŷmn is the m-th estimated output 
value of the n-th sample; Ymn is the m-th actual output 
value of the n-th sample. The performance of a model 
is more precise with R2, ME and RMSE closer to 1, 0 
and 0, respectively. 

4 Traditional water quality modeling 

The 1D water quality model [4] was a steady state 
model. A modeled segment was regarded as a 
continuously stirred-tank reactor (CSTR), and the 
entire study site was regarded as a thoroughly mixed 
system of linked CSTRs. The state variables included 5 
quality indicators: BOD, DO, NH3-N, oil content and 
Φ-OH.  

In the 1D steady state water quality model, we used 
the same monthly water-quality data and hydrological 
characteristics of the study site coming from the Sino-
British science program: Water Pollution Control 
Planning of the Chongqing City Reach of Yangtze 
River and Jialing River performed in 1992 [4]. We set 
the attenuation rate at 0.1 for BOD and ammonia 
nitrogen, and at 0.001 for oil content and Φ-OH content 
based on previous research [4].  
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5 Results and discussion 

5.1 Comparison of BP-DBD and RBF models with 1D 
traditional water quality model  

Table 2 gives the final network characteristics of 
both BP-DBD and RBF neural network models, while 
Fig. 5 shows the performance efficiencies (i.e., R2, ME 
and RMSE).  

 

Table 2  Final network characteristics of the BP-DBD and 
RBF neural networks 

Number of neurons in a layer Model 
Input Hidden Output 

Number of 
iterations 

BP-DBD 15 10 5 4 700 
RBF 15 13 5 267 

 
 
Among the BP-DBD, RBF and 1D traditional water 

quality models, the BP-DBD and RBF neural network 
models achieved higher accuracy and better correlative 
performance than the 1D tradition water quality model 
(Fig. 5). The ME and RMSE values of both BP-DBD 
and RBF neural network models for each of the 5 water 
quality indicators were smaller, especially those for 
NH3-N, Oil and Φ-OH. The overall RMSEs of BP-
DBD and RBF were also much smaller than the overall 
RMSE of 1D, with their values equal to 0.106 00, 
0.121 24, and 0.243 62, respectively. 

The traditional water quality model aims to describe 
the purification process of water. Nevertheless, when 
applied to large water bodies, the model delivers no 
discernible response to the pollutant loadings, leaving 
no clear “signal” with which to calibrate the model [12]. 
This was the case of the study reaches of the Yangtze 
and the Jialing Rivers, for which the responses of the 
model to the loadings of the foregoing mentioned five 
indicators were unclear, lacking DO depletion or “DO 
sag”. This potential impediment resulted in the poor 
performance of the traditional water quality model.  

On the other hand, neural network models seek to 
build up black box models representing the potential 
relationship between water qualities of natural water 
bodies without considering the complex biochemical 
process in water. This modeling approach avoids error 

propagation and uncertainty generation in the model 
structure, parameter estimation and calibration in 
traditional water quality model. Therefore, higher 
accuracy and goodness-of-fit in a black box model can 
be expected. 

5.2 Comparison between BP-DBD and RBF models 

Both the BP-DBD and RBF neural network models 
performed well. The RBF neural network required 
fewer iterative times, however (Table 2). This is the 
primary advantage of an RBF neural network model, 
which is credited to the distinct functional framework 
of this type of network. 

Both the BP-DBD and RBF models yielded high 
accuracy in the estimation of water quality at the 
downstream cross section of a segment. As the 
concentration of Ф-OH and oil were at a relatively low 
level in both drought and flood seasons, however, there 
remained no significant differences in the MEs of Ф-
OH and oil between the BP-DBD and RBF neural 
networks. Nevertheless, for the other 3 indicators, DO, 
BOD and NH3-N, the RBF neural network achieved a 
higher accuracy than the BP-DBD neural network 
model. 

Both the neural networks model fitted well with the 
measured data in the form of R2 and RMSE, though 
some differences remained. For both BOD and DO, the 
higher R value of the BP-DBD model, corresponding to 
the smaller RMSE, showed that BP-DBD model 
performed better than the RBF model in the estimation 
of DO and BOD (see Table 4 and Fig .4), whereas the 
results of the other 3 constituents were contrary. 
Although the differences between the performance of 
the BP-DBD and RBF models were small, the results 
remain interesting. 

Moreover, evaluating the overall performance of 
both ANN models with RMSE calculated by Eq. (2), 
revealed that the goodness-of-fit of BP-DBD for the 
whole water quality model was better than that of RBF, 
seeing the smaller RMSE value of BP-DBD. 

The performance of ANN models is sensitive to 
model structure (e.g., spreads for RBF), data inputs and 
ANN connective initial weight matrix [13]; all have the 
potential to contribute to differences in performance of 
the BP-DBD and RBF models. More effort is needed to 
identify which factor affects most the water quality 
simulation with a neural network approach.
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Fig. 5  Correlative coefficient (R2), mean error (ME), and root mean square error (RMSE) of the BP-DBD (back-propagation 
delta-bar-delta) and RBF (radial basis function) neural networks and one-dimensional (1D) tradition water quality model for (a), 
(b) and (c) BOD (biochemical oxygen demand); (d), (e) and (f) DO (dissolved oxygen); (g), (h) and (i) NH3-N (ammonia 
nitrogen); (j), (k) and (l) Φ-OH (volatile phenolic compounds); and (m), (n) and (o) oil 
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6 Conclusions 

The BP-DBD neural network model and RBF neural 
network model established for simulating water quality 
of the reaches of the Yangtze and Jialing Rivers 
crossing Chongqing were proven to be advantageous 
over the 1D traditional water quality model for higher 
accuracy and better goodness-of-fit. Of the two ANN 
models, the RBF needed fewer iterations and achieved 
a higher accuracy. Nevertheless, the results for the R2 
and RMSE for individual quality indicators and the 
overall quality indicated that the RBF neural network 
model performed no better than the BP-DBD. More 
effort is needed to identify the factors that considerably 
affect the simulation of water quality based on neural 
network approaches. 
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