Vol. 8 No. 1

Journal of Chongqging University (English Edition) [ISSN 1671-8224] March 2009

Article ID: 1671-8224(2009)01-0001-09

To cite this article: GUO Jin-song, LI Zhe. Artificial neural network modeling of water quality of the Yangtze River system: a case study in reaches crossing the city of
Chongging [J]. J Chongqing Univ: Eng Ed [ISSN 1671-8224], 2009, 8(1): 1-9.

Artificial neural network modeling of water quality of the Yangtze
River system: a case study in reaches crossing the city of Chongging®

GUO Jin-song ', LI zhe*
Faculty of Urban Construction and Environmental Engineering, Chongging University, Chongging 400030, P.R. China

Received 5 June 2008; received in revised form 11 October 2008

Abstract: An effective approach for describing complicated water quality processes is very important for river water quality
management. We built two artificial neural network (ANN) models, a feed-forward back-propagation (BP) model and a radial
basis function (RBF) model, to simulate the water quality of the Yangtze and Jialing Rivers in reaches crossing the city of
Chongqing, P. R. China. Our models used the historical monitoring data of biological oxygen demand, dissolved oxygen,
ammonia, oil and volatile phenolic compounds. Comparison with the one-dimensional traditional water quality model suggest that
both BP and RBF models are superior; their higher accuracy and better goodness-of-fit indicate that the ANN calculation of water
quality agrees better with measurement. It is demonstrated that ANN modeling can be a tool for estimating the water quality of the
Yangtze River. Of the two ANN models, the RBF model calculates with a smaller mean error, but a larger root mean square error.
More effort to identify out the causes of these differences would help optimize the structures of neural network water-quality
models.

Keywords: water quality modeling; Yangtze River; artificial neural network; back-propagation model; radial basis function
model
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1 Introduction the great significance of water resource utilization and

ecological environment protection in the Yangtze River

The Yangtze River, the largest in P. R. China and the
third longest in the world, flows through 10 provinces
and autonomous regions of China. It finally enters the
East China Sea after running 6 300 km across a
catchment of 1.8x10°km® which covers one fifth of
land area of P. R. China [1]. The Yangtze River
provides drinking water for 500 million Chinese people
and its watershed is home to approximately 40% of P.
R. China’s GDP (gross domestic product). Considering
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basin, the environmental protection framework of the
Yangtze River [1] was set up early in 1970s, which
included a water quality monitoring program, water
quality management, and pollution control planning.
As the significant basic work of water quality
management, where the core issue is the environmental
capacity calculation and waste loadings allocation of
the Yangtze River basin, water quality models showing
the fate and transport of contaminants in the Yangtze
River are useful tools.

Traditional mathematical modeling of water quality
aims at explaining the fate of different pollutants in
both water bodies and sediments with respect to
advection, dispersion/diffusion and biogeochemical
conversion through rough approximation of the real
system [2]. This leads to large, comprehensive and
often over-parameterized models difficult to identify
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and with many uncertainties [3]. New modeling
approaches, such as non-linear description of water
processes, have become popular due to their
performance in characterizing complex water quality
processes with high accuracy.

In contrast to the biogeochemical conversion process
which is primarily considered in water quality
modeling of small rivers, hydrological characteristics
(advection, dispersion/diffusion, etc.) have been the
focus of water quality modeling for the Yangtze River
for decades. Two directions have attracted much
attention: one is the application of advanced algorithms
to solve the hydraulic partial differential equations
under various boundary conditions of complexity; and
the other aims to identify and calibrate parameters,
especially those related to the advection and
dispersion/diffusion process in water quality models.
To date, there has not been a reported application of
artificial neural network (ANN) models to the
simulation of Yangtze River water quality. It is
therefore worthwhile to try a new modeling approach
based on artificial intelligence to simulate the water
quality of the Yangtze River.

In this work, we established two one-dimensional
(ID) ANN models to represent quantitatively the
relationships among major contaminants in the reaches
of the Yangtze River and the Jialing River (a tributary
of the Yangtze) passing through the city of Chongqing
in the upper Yangtze basin. We concentrated on
deriving deterministic quantitative relationships among
the constituents between different cross sections for the
two rivers without complex description of
biogeochemical conversion processes in a water
column, and comparing the performance of different
models.

2 Background and methods
2.1 Study site

Chongqing is a river-girdled city hemmed in
between mountains, where an upper reach of the
Yangtze River is joined by one of its major tributaries,
the Jialing River. This study focused on the trunk
streams of the Yangtze River and the Jialing River
within the Chongqing Municipality. The length of
Yangtze in the study area was 240.8 km from Yangshi
in Jiangjin County to Huangcaoxia in Changshou
District, flowing through 9 Chongqing Municipality
districts. The maximum flow of the Yangtze through

the Cuntan cross section was 85700 m’/s, and the
average annual flow was 11 308 m’/s [4]. The Jialing
River travels 153.8 km in the Chongqing Municipality
from Guanyinyan in Hechuan County to Daxigou in
the Yuzhong District next to its confluence with the
Yangtze at Chaotianmen. The maximum flow of the
Jialing at Daxigou was 44 800 m’/s and average annual
flow was 2 120 m’/s [4]. The Fujiang River is the
largest tributary of the Jialing River. In the model, it
was simplified as the largest point source of pollution
into the Jialing. Fig. 1 shows a map of the study site
and the cross sections to be calculated. Basic
hydrological data of both rivers are shown in Table 1.

Besides the complex hydrological characteristics of
the two rivers, sewage discharge in the study area was
rather complicated. The two rivers especially were
contaminated traveling through the urban area. Major
pollutants came from point sources of industrial and
municipal wastewater, added to by the pollution loads
from their tributaries and also non-point sources from
agriculture and urban runoff [4].

Legend:

- Place
+ Cross section
—=  Flow direction
GY: Guanyinyan BS: Baishatuo

Y BB: Beibei WL: Wanglongmen
CQ: Cigikou CT: Cuntan
DX: Daxigou YZ: Yuzui
YS: Yangshi HC: Huangcaoxia

Fig. 1 Map of the study site
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2.2 Data source

The Ministry of Water Resources and the State
Environmental Protection Administration of P. R.
China jointly initiated a long-term river water quality
monitoring program for the Yangtze River basin in the
1970s. The water quality data of the Yangtze and the
Jialing Rivers used in this study were sourced from the
monitoring program in 1989 [4], before the start of the
Three Gorges Dam (TGD) Project, which reflected the
original hydrological characteristics of both rivers
before the interruption of TGD.

Cross sections selected for the Yangtze River
monitoring system in the city of Chongqing were at
Yangshi, Baishatuo, Wanglongmen, Cuntan, Yuzui and
Huangcaoxia, respectively; and those for the Jialing
River system were at Guanyinyan, Beibei, Cigikou and
Daxigou (Fig. 1). Concentrations of major pollutants in
the two rivers measured in February and August of
1989 were used as typical data of flood season and
drought season (Table 1 [4]). Biochemical oxygen
demand (BOD), dissolved oxygen (DO), ammonia
(NH;3-N), oil and volatile phenolic compounds (©-OH)
were selected as the water quality variables.

3 ANN modeling
3.1 ANN

The ANN architecture is a massive parallel
distributed information-processing system that has
certain  performance  characteristics resembling
biological networks of the human brain [5]. Back-
propagation (BP) is a type of ANN among the most
researched and widely-used structures in hydrology and
water-resource problems. It usually comprises three or
more layers: an input layer, one or more hidden layers,
and an output layer [6-7]. Each layer of BP neural
networks is linked by weights that need to be
determined through a learning algorithm [8]. The delta-
bar-delta (DBD) algorithm is an effective learning
algorithm with a self-adapted learning rate and has the
advantages of minimizing convergence time and
diminishing local extremum vibration in BP neural
networks [8].

To obtain fast convergence and avoid local vibration
when processing a large number of samples in BP
neural networks, a radial basis function (RBF) neural

network model was developed [6]. The RBF
architecture is similar to that of the BP, but uses a
Gaussian Kernel function and consists of only three
layers (see Fig. 3) while the BP consists of three or
more layers. The RBF neural networks, in theory,
provide an effective method for the learning (training),
not only showing good performance in convergence,
but also avoiding over-fitting. The learning of RBF
neural networks is 10° to 10* times faster than that of a
simple BP algorithm. The number of hidden neurons
critically affects the performance of RBF neural
networks, however [8-10].

3.2 Configuration of neural network models

In this study, we built a BP-DBD neural network
model and an RBF neural network model to simulate
the water quality in different cross sections. Selection
of indicative pollutants in water for both models
followed the same procedure as in the traditional river-
water-quality model in Ref. [4]. River flow, pollutant
retention time, point and non-point pollutant loadings,
and upstream pollutant concentration are the most
important factors influencing the water quality from the
upstream cross section to downstream. As a result, the
objective of the neural network model is to establish
the functional mapping relationship between upstream
and downstream cross sections, which can be described
as

(8d) = fI(Sw),(Q. L, B,1),(¢,5)] , (1

where Sd is the output of the state variables of the
model, i.e., the concentrations of DO, BOD, NH;-N, ®-
OH and Oil, at downstream cross section; Su refers to
the water quality at the upstream cross section, which is
regarded as the initial boundary; O, L, B and ¢ are
hydrological parameters of the system, with Q as the
river flow in both flood season and drought season in
1989, L the length of the segment, B the average width
of the water surface and ¢ the average retention time of
constituents; g and S are the pollutant loading forcing
functions in the river, with ¢ as the input flow of a
tributary and S the overall pollutant loading, including
point source and non-point source in the segment
during the periods of concern. Structures for BP-DBD
and RBF are shown in Figs. 2 and 3.
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Output layer

Hidden layer

Input layer

Fig. 2 Neural network model structure for BP-DBD (back probation—delta-bar-delta), where BOD is the biochemical oxygen
demand; DO the dissolved oxygen; NH3-N, the concentration of ammonia nitrogen; Oil, the concentration of oils; and ®-OH, the
concentration of volatile phenolic compounds; the subscript A refers to the variables in the input layer and the subscript B, the

variables in the output layer

Input layer

Hidden layer

Qutput layer

Fig. 3 Sketch of neural network model structure for radial basis function (RBF), where x1, x,, x;.; and x; are the variables in the
input layer, y; and y; are the variables in the output layer; and z,, z, and z; are the variables in the hidden layer

Several segments in the Yangtze and Jialing Rivers
were defined for simplifying the complexity of the
physical boundaries of natural water bodies. Each
segment was assumed to be of the same physical

characteristics, including hydraulic gradient and
boundary condition, but in modeling was regarded as
an independent unit, linking end-to-end in series to
create a single spatial step during the calculation of
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water quality.

In this study, the target sections of the Yangtze and
Jialing Rivers were divided into 5 and 3 segments,
respectively, based on the water quality monitoring
data. Water quality at the upstream cross section in a
segment, hydrological characteristics and pollutant
loadings between two neighboring cross sections of
one segment were regarded as the input of the neural
network model, and the output was the water quality at
the downstream cross section of the segment (see Fig.
4). Sixteen groups of the water quality data samples
and the hydrological characteristics in both flood
season and drought season of the 8 segments are listed
in Table 1. In these data samples, 3 groups were used
for validation but not for training and parameter
estimation, i.e., the data of the segment of the Yangtze
River between Yangshi and Baishatuo in both flood
and drought seasons and the data of the segment of the
Jialing River between Cigikou and Daxigou in the
flood season, and the other 13 groups were used in the
training for both BP-DBD and RBF neural network
models.

. Input
Guanyinyan

ANN
bt LN |
Beibei
ANN
Cigikou -
Ciqikou
ANN
Daxigou -

Input Output
PCANN =] ANN | ANN | ANN | ANN P
on < < g‘ =] = = o

= = en &n = 3 > <
5 Z 2 § § o O 5y
m M e oh El
g 5 E
= 2

Fig. 4 Segmentation of the Yangtze between Yangshi and
Huangcaoxia and of the Jialing between Guanyinyan and
Daxigou in ANN (artificial neural network) modeling

3.3 Implementation and performance evaluation of
the neural network models

Both the BP-DBD and RBF neural network models
of the reaches of the Yangtze and the Jialing passing
through the city of Chongqing were implemented using
Matlab 6.0 (www.mathworks.com). In the BP-DBD
model, the initial weight matrix, the threshold matrix of

the neural network, and the momentum factors were all
set to equal 0.1.

In the RBF neural network model, the number of
neurons in the input layer was 15, the output layer had
5 neurons, and the initial number of neurons in the
hidden layer was set at 9. The first 4 training samples
in Table 1 were used as the centers for RBF. The initial
parameter in normalization was set at 0.1, and
maximum number of iterative times was 1 000, the
learning accuracy was set at 0.001, and other
parameters in the neural network were set according to
the defaults in Function Newrb in the Matlab tool box
for neural network models.

The simulation results of the BP-DBD and RBF
neural networks were compared with traditional water
quality modeling in Ref. [4]. Performance of these 3
models were evaluated by 3 efficiency parameters:
correlative coefficient (R?), the mean error (ME), i.c.,
the systematic difference between the estimated and
measured data, and the measure of goodness-of-fit, root
mean square error (RMSE) calculated by [11]

RMSE = \/ﬁfi[xﬂ -7, ]. 2)

m=1 n=1

where M is the number of estimated output; N is the
number of samples; Y,, is the m-th estimated output
value of the n-th sample; Y, is the m-th actual output
value of the n-th sample. The performance of a model
is more precise with R, ME and RMSE closer to 1, 0
and 0, respectively.

4 Traditional water quality modeling

The 1D water quality model [4] was a steady state
model. A modeled segment was regarded as a
continuously stirred-tank reactor (CSTR), and the
entire study site was regarded as a thoroughly mixed
system of linked CSTRs. The state variables included 5
quality indicators: BOD, DO, NH;-N, oil content and
®-OH.

In the 1D steady state water quality model, we used
the same monthly water-quality data and hydrological
characteristics of the study site coming from the Sino-
British science program: Water Pollution Control
Planning of the Chongqing City Reach of Yangtze
River and Jialing River performed in 1992 [4]. We set
the attenuation rate at 0.1 for BOD and ammonia
nitrogen, and at 0.001 for oil content and ®-OH content
based on previous research [4].

6 J. Chonggqing Univ. Eng. Ed. [ISSN 1671-8224], 2009, 8(1): 1-9
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5 Results and discussion

5.1 Comparison of BP-DBD and RBF models with 1D
traditional water quality model

Table 2 gives the final network characteristics of
both BP-DBD and RBF neural network models, while
Fig. 5 shows the performance efficiencies (i.e., R?, ME
and RMSE).

Table 2 Final network characteristics of the BP-DBD and
RBF neural networks

Model Number of neurons in a layer Number of
Input  Hidden  Output iterations

BP-DBD 15 10 5 4700

RBF 15 13 5 267

Among the BP-DBD, RBF and 1D traditional water
quality models, the BP-DBD and RBF neural network
models achieved higher accuracy and better correlative
performance than the 1D tradition water quality model
(Fig. 5). The ME and RMSE values of both BP-DBD
and RBF neural network models for each of the 5 water
quality indicators were smaller, especially those for
NH;-N, Oil and ®-OH. The overall RMSEs of BP-
DBD and RBF were also much smaller than the overall
RMSE of 1D, with their values equal to 0.106 00,
0.121 24, and 0.243 62, respectively.

The traditional water quality model aims to describe
the purification process of water. Nevertheless, when
applied to large water bodies, the model delivers no
discernible response to the pollutant loadings, leaving

no clear “signal” with which to calibrate the model [12].

This was the case of the study reaches of the Yangtze
and the Jialing Rivers, for which the responses of the
model to the loadings of the foregoing mentioned five
indicators were unclear, lacking DO depletion or “DO
sag”. This potential impediment resulted in the poor
performance of the traditional water quality model.

On the other hand, neural network models seek to
build up black box models representing the potential
relationship between water qualities of natural water
bodies without considering the complex biochemical
process in water. This modeling approach avoids error

propagation and uncertainty generation in the model
structure, parameter estimation and calibration in
traditional water quality model. Therefore, higher
accuracy and goodness-of-fit in a black box model can
be expected.

5.2 Comparison between BP-DBD and RBF models

Both the BP-DBD and RBF neural network models
performed well. The RBF neural network required
fewer iterative times, however (Table 2). This is the
primary advantage of an RBF neural network model,
which is credited to the distinct functional framework
of this type of network.

Both the BP-DBD and RBF models yielded high
accuracy in the estimation of water quality at the
downstream cross section of a segment. As the
concentration of ®-OH and oil were at a relatively low
level in both drought and flood seasons, however, there
remained no significant differences in the MEs of ®-
OH and oil between the BP-DBD and RBF neural
networks. Nevertheless, for the other 3 indicators, DO,
BOD and NHj;-N, the RBF neural network achieved a
higher accuracy than the BP-DBD neural network
model.

Both the neural networks model fitted well with the
measured data in the form of R* and RMSE, though
some differences remained. For both BOD and DO, the
higher R value of the BP-DBD model, corresponding to
the smaller RMSE, showed that BP-DBD model
performed better than the RBF model in the estimation
of DO and BOD (see Table 4 and Fig .4), whereas the
results of the other 3 constituents were contrary.
Although the differences between the performance of
the BP-DBD and RBF models were small, the results
remain interesting.

Moreover, evaluating the overall performance of
both ANN models with RMSE calculated by Eq. (2),
revealed that the goodness-of-fit of BP-DBD for the
whole water quality model was better than that of RBF,
seeing the smaller RMSE value of BP-DBD.

The performance of ANN models is sensitive to
model structure (e.g., spreads for RBF), data inputs and
ANN connective initial weight matrix [13]; all have the
potential to contribute to differences in performance of
the BP-DBD and RBF models. More effort is needed to
identify which factor affects most the water quality
simulation with a neural network approach.
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Fig. 5 Correlative coefficient (R%), mean error (ME), and root mean square error (RMSE) of the BP-DBD (back-propagation
delta-bar-delta) and RBF (radial basis function) neural networks and one-dimensional (1D) tradition water quality model for (a),
(b) and (c) BOD (biochemical oxygen demand); (d), (e) and (f) DO (dissolved oxygen); (g), (h) and (i) NH3-N (ammonia
nitrogen); (j), (k) and (1) ®-OH (volatile phenolic compounds); and (m), (n) and (o) oil
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6 Conclusions

The BP-DBD neural network model and RBF neural
network model established for simulating water quality
of the reaches of the Yangtze and Jialing Rivers
crossing Chongqing were proven to be advantageous
over the 1D traditional water quality model for higher
accuracy and better goodness-of-fit. Of the two ANN
models, the RBF needed fewer iterations and achieved
a higher accuracy. Nevertheless, the results for the R
and RMSE for individual quality indicators and the
overall quality indicated that the RBF neural network
model performed no better than the BP-DBD. More
effort is needed to identify the factors that considerably
affect the simulation of water quality based on neural
network approaches.
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