磷对土壤中砷吸附的影响 *

雷 梅 陈同斌 范稚连 莫良玉 黄泽春

(中国科学院地理科学与自然资源研究所环境修复室,北京 100101)

关键词 磷 砷 吸附 黄壤 红壤 褐土

文章编号 1001 - 9332(2003)11 - 1989 - 04 中图分类号 X131.3 文献标识码 A

Effect of phosphorus on arsenic adorption by three different soils. LEI Mei, CHEN Tongbin, FAN Zhilian, MO Liangyu, HUANG Zechun (*Environmental Remediation Laboratory*, *Institute of Geographical Sciences and Natural Resources Research*, *Chinese Academy of Sciences*, *Beijing* 100101, *China*). - *Chin. J. Appl. Ecol.*, 2003, 14(11):1989 ~ 1992.

The effect of phosphorus on arsenic adsorption by yellow soil , red soil and brown soil was studied using batch experiment. The results indicated that the arsenic without P amendment adsorption capacity of three tested soils was yellow soil > red soil > brown soil. The maximal adsorption capacity of yellow soil and red soil was decreased with 60 mg \cdot kg $^{-1}$ phosphorus added ,and that of brown soil was increased with 20 mg \cdot kg $^{-1}$ phosphorus added. The arsenic adsorption capacity of three soils was greater when P As = 1 2 than that when P As = 1 1 and P As = 2 1 , and the differences between P As = 1 1 and P As = 2 1 treatments were not significant. Observations could be better fitted by Langmuir equations.

Key Words Phosphorus, Arsenic, Adsorption, Yellow soil, Red soil, Brown soil.

1 引 言

植物修复技术 (phytoremediation) 是近年来出 现的一种投资少、环境安全性好,并能产生良好生态 效应的土壤污染治理方法. 陈同斌等[4]在我国首次 发现了蜈蚣草能够超富集 As,这为利用植物修复 As 污染土壤提供了可能. 如何提高土壤中 As 的生 物有效性是提高植物修复效率的关键^[3,13]. As 和 P 同属元素周期表中的第 族,化学性质类似,在土壤 中两者均以阴离子的形式存在,化学行为相似.研究 表明,P和As在土壤可以相互竞争土壤胶体上的吸 附位点[5,10]. 在早期研究中发现, As 在砖红壤中的 吸附对土壤电动性的影响方式与 P 的影响方式相 同,且影响程度大于后者,因此,至少有一部分 As 像 P 一样可被土壤胶体专性吸附[6]. 后来的研究结 果证实了P可以与土壤固相中专性吸附的和非专 性吸附的 As 竞争吸附点位[11]. 这也解释了为什么 As 在 P 含量较高的氧化土中的移动性大于 P 含量 较低的氧化土的原因^[9]. 但是不同浓度的 P 对 As 吸附的影响规律,目前尚不清楚.本文着重研究不同土壤中As的吸附受不同P水平的影响,为应用超富集植物(hyperaccumulator)修复As污染土壤时,合理施用磷肥提供理论依据.

2 材料与方法

2.1 供试土壤

吸附实验的供试土壤为山地黄壤、红壤、褐土,分别用Y、R和B表示,Y为取自湖南桂阳的山地黄壤 $0\sim 20 \text{cm}$ 土壤,R为取自湖南石门县白云乡鹤山村附近的红壤耕层土壤,B表示北京昌平县内采集的褐土,其基本特性见表 1 ,1 ,1 ,1 位在土水 = 1 2.5的条件下测定,CEC用 HOAc 1 mol 1 。 代换法测定,机械组成用岛津 RS-1000 自动仪测定.

2.2 等温吸附

称取过 20 目筛的供试土壤 2.50g 于 50ml 塑料瓶中,根据表2中的比例和浓度加入的Na₂ HAsO₄或NaH₂ PO₄溶

2002 - 07 - 05 收稿,2003 - 02 - 08 接受.

^{*}国家重点基础研究发展规划项目(G1999011808)、北京市自然科学基金重大项目(6990002)和国家自然科学基金资助项目(40071075).

^{* *}通讯联系人.

表 1 供试土壤的理化性质

lable 1 Thysical and chemical characteristics of soils tested							
土壤	取样地点	рΗ	CEC		成 Textui	re (%)	
Soil type	Site	_	(cmol ·kg - 1	> 0.02mm	0.02	< 0.002	
				~	0.002mr	n mm	
黄壤	湖南桂阳	5.91	8.22	17.6	42.4	40	
Yellow soil	Guiyang, Hunan						
红壤	湖南石门	6.23	14	18.2	43.8	38	
Red soil	Shimen, Hunan						
褐土	北京昌平	8.07	14.2	52	22	26	
Brown soil	Changping Beijing						

表 2 3 种土壤等温吸附的处理

Table 2 Different treatments of three soil tested

土壤	处理 *	 P和 As 的添加浓度					
Soil type	Treatment	Added concentration of P and As			\s		
			(mg kg	· 1 soil)	#	
黄壤	黄壤-无 P Y without P	0 20	0 40	0 60	0 80	0 100	0 120
Yellow	黄壤-PY-P	60 10	60 20	60 30	60 40	60 50	60 60
soil	黄壤(1 2)Y(1 2)	8 16	16 32	24 48	32 64	36 72	40 80
	黄壤(1 1)Y(1 1)	10 1	20 20	30 30	40 40	50 50	60 60
	黄壤(2 1)Y(2 1)	16 8	32 16	48 24	64 32	72 36	80 40
红壤	红壤-无 P R-without P	0 20	0 40	0 60	0 80	0 100	0 120
Red	红壤-P R-P	60 10	60 20	60 30	60 40	60 50	60 60
soil	红壤(1 2)R(1 2)	8 16	16 32	24 48	32 64	36 72	40 80
	红壤(1 1)R(1 1)	10 10	20 20	30 30	40 40	50 50	60 60
	红壤(2 1)R(2 1)	16 8	32 16	48 24	64 32	72 36	80 40
褐土	褐土-无 PB-without F	0 4	0 8	0 16	0 20	0 24	0 32
Brown	褐土-PB-P	20 4	20 8	20 16	20 20	20 24	20 32
soil	褐土(1 2)B(1 2)	4 8	8 16	12 24	16 32	20 40	24 48
	褐土(1 1)B(1 1)	2 2	4 4	8 8	12 12	16 16	20 20
	褐土(2 1)B(2 1)	8 4	16 8	24 12	32 16	40 20	48 24

*黄壤-无 P 表示黄壤等温吸附 As 的过程中不添加 P 的处理 ,黄壤-P 表示添加固定量的 P 的处理 ,黄壤(1 2)表示黄壤等温吸附 As 的过程中 P 的添加浓度与 As 的添加浓度为 1 2. Y-without P indicates As adsorption in yellow soil without P addition. Y-P indicates the treatment with P addition of same amount. Y(1 2) indicates the concentration ratio of P addition and As addition is 1 2. # 0 20 表示 P 的添加浓度为 0 mg kg⁻¹ soil ,As 的添加浓度为 20 mg kg⁻¹ soil .0 20 indicates the added concentration of P is 0 mg kg⁻¹, and the added concentration of As is 20 mg kg⁻¹. 下同 The same below.

2.3 As 测定

溶液的 As 用二乙基二硫代氨基甲酸银分光光度法测定.

3 结果与分析

3.1 土壤对 As 的吸附

从等温吸附曲线中可以看出,3 种土壤对 As 的吸附能力差异十分显著(图 1),其中黄壤吸附曲线

的斜率最大,红壤其次,褐土最低.用Langmuir方程

$$S = KCS_{\text{max}}/(1 + KC)$$

拟合 3 种土壤的等温吸附曲线 ,相关系数 R^2 均达到了 0.01 的极显著水平(表 3). 方程中 S 表示等温吸附平衡体系中固相中 As 的浓度 $(mg \cdot kg^{-1})$, C 表示平衡体系中液相中 As 的浓度 $(mg \cdot kg^{-1})$, S_{max} 为最大吸附量 $(mg \cdot kg^{-1})$, K 为常数 . 3 种土壤中黄壤的最大吸附量 S_{max} 最大 ,红壤次之 ,褐土最小 . 黄壤的 S_{max} 为红壤的 1. 47 倍 ,是褐土的 10. 47 倍 . 结果表明 ,黄壤对砷的吸附能力最强 ,红壤其次 ,褐土最低

对比 3 种土壤的理化性质 (表 1) 发现 ,土壤对 As 的吸附能力可能与土壤的酸碱度和粘粒含量有 关. 3 种土壤的 p H 值按照黄壤 < 红壤 < 褐土的顺序 递增 ,粘粒含量按照黄壤 > 红壤 > 褐土的顺序递减 ,

图 1 3 种土壤在不添加 P 和添加固定量的 P 的处理中对 As 的等温吸附

Fig. 1 Adsorption isotherms of As in three soils without and with P addition

由此推断,土壤对 As 的吸附能力可能随着土壤 p H 增加和粘粒含量的减少而减弱.

3.2 P对土壤吸附 As 的影响

3.2.1 添加固定量的 P 在进行 3 种土壤中 As 的等温吸附实验同时,向体系中添加一定量的 P,研究 P对As吸附的影响.这种条件下,3种土壤的等温吸附曲线用Langmuir方程拟合,均达到了0.01的

表 3 Langmuir 方程拟合 3 种土壤中 As 的等温吸附结果

Table 3 Isotherm result of As in three soils fitted by Langmuir equation

土壤	处理		的添加量	K	$S_{\rm max}$	R ²
Soil type	Treatment		d concentrati P(mg·kg ⁻¹)		mg ⋅kg ¯	1)
黄壤	黄壤-无 P Y-without	P	0	0.064	234.1	0.941 * *
Yellow soil	黄壤-PY-P		60	0.082	138.9	0.995 * *
红壤	红壤-无 P R-without	P	0	0.075	158.8	$0.987\ ^{*\ *}$
Red soil	红壤-PR-P		60	0.314	65.5	$0.960~^{\star}~^{\star}$
褐土	褐土-无 PB-without	P	0	0.963	22.4	$0.940~^{*~*}$
Brown soil	褐土-PB-P		20	0.059	36.0	0.962 * *

^{* *} P < 0.01.

P的等温吸附曲线可以发现,在黄壤中,添加 60mg· kg-1 P 时,黄壤对 As 的吸附能力减弱,最大吸附量 从 234.1 mg ·kg⁻¹下降到 138.9 mg ·kg⁻¹,降低了 40.67%; P 对红壤吸附 As 的影响与黄壤稍有不同, 当 As 浓度较低时, P 的加入可以促进红壤对 As 的 吸附;随着 As 浓度的增加,P逐渐成为抑制 As 吸附 的因素,最终使得红壤对 As 的吸附量从 158.8 mg· kg⁻¹下降到 65.5 mg·kg⁻¹,下降了 58.77 %;而褐 土与红壤正好相反, 当等温吸附平衡溶液中 As 的 浓度在 0~10.7 mg ·kg ·1时, P 的加入减弱了褐土 对 As 的吸附,但是用 Langmuir 方程拟合结果表明, 20mg ·kg · 1的 P 可以使褐土对 As 的最大吸附量从 22.35 增加到 36.04,也就是说,当 As 的浓度较高 时,20 mg kg⁻¹的 P 可以促进褐土对 As 的吸附. 3.2.2 P As 比对土壤吸附 As 的影响 为了进一步 研究 P 对土壤吸附 As 的影响,我们改变 P 与 As 添 加浓度的比例,观察 As 等温吸附的变化.3 种土壤 不同处理的等温吸附曲线见图 2. 从图 2 可以看出, 在实验浓度范围内,3种土壤在 P As=1 2的处理 中的等温吸附曲线明显不同于 1 1 和 2 1 的处理, 在黄壤(1 2)的处理中 As 的吸附量明显高于黄壤 (1 1)和黄壤(2 1)处理(图 2A). As 浓度较低时,红 壤不同处理之间的差异不明显;当 As 的添加浓度 超过 32 mg ·kg - 1之后,红壤(1 2)处理中 As 的吸附 量明显大于红壤(1 1)和红壤(2 1)处理(图 2B). 褐 土对 As 的吸附量在褐土(1 2) 处理明显高于另外 两个处理(图 2C).3 种土壤种 P As = 1 1 处理和 P As=1 2处理之间的差异不明显.

极显著水平(表 3), 对比不添加 P 和添加固定量的

用 Langmuir 方程拟合上述等温吸附曲线 ,均达到了 0.01 的极显著水平(表 4). 比较各处理的 S_{max} 可以看出 ,对于黄壤而言 ,P As=1 2 处理的 S_{max} 为 97.8 mg kg^{-1} ,而另外两种处理的 S_{max} 始终未超过 75.0 mg kg^{-1} . 这一现象在红壤的各处理中表现得更加明显 ,P As=1 2 处理的 S_{max} 是 1 1 处理和 2 1 处理的 4 倍多. 在褐土中也存在同样的规律 ,但变化幅度不大 ,P As=1 2 处理的 S_{max} 仅为 1 1 处理和 2 1 处理的 2 倍左右.

从不同 P As 比的处理中可以看出,吸附质中 P 的存在可以改变土壤对 As 的吸附,并且 P 在吸附质中所占比例不同,对 As 吸附的影响差异很大. 从各处理的最大吸附量 S_{max} 可以看出,对于黄壤而言,P 的加入明显降低了 As 的吸附, S_{max} 由黄壤-无 P 处理的 234. 1 mg·kg⁻¹下降到 97. 1 ~ 59. 0 mg·

 kg^{-1} ,并随 P As 比例的升高而降低,即 P 在吸附质中所占的比例越高,黄壤对 As 的 S_{max} 越小. 在相同条件下,红壤却未表现出相同的规律:红壤 $(1\ 2)$ 处理的 S_{max} 是红壤-无 P 处理的 1.8 倍,表明加入少量的 P 可以促进红壤对 As 的吸附,随着吸附质中 P 的比例增加, S_{max} 由红壤 $(1\ 2)$ 处理的 285.1 mg· kg^{-1} 下降到 $50.3 \sim 62.0$ mg· kg^{-1} ,下降了 78%,红

图 2 不同 P As 比例对土壤吸附 As 的影响 Fig. 2 Effluence of P As ratio on adsorption of As.

表 4 Langmuir 方程拟和不同 P As 比的等温吸附曲线
Table 4 Isotherm result of P As ratio fitted by Langmuir equation

Table 4 Isother	in result of 1 As latio	THECH D	Langmun Co	i unition
土壤 Soil type	P As 添加浓度比 Concentration ratio of P and As added	K	S_{max} (mg kg^{-1})	R^2
黄壤 Yellow soi	1 1 2	0.403	97.8	0.941 * *
	1 1	0.367	75.0	0.972 * *
	2 1	0.548	59.0	0.849 * *
红壤 Red soil	1 2	0.081	285.1	0.991 * *
	1 1	1.515	50.3	0.855 * *
	2 1	0.592	61.8	0.997 * *
褐土 Brown soil	1 2	0.153	32.9	0.991 * *
	1 1	0.321	17.6	0.988 * *
	2 1	0.363	16.4	0.955 * *

^{* *} P < 0.01.

壤对 As 的吸附明显减少. 褐土的不同 P As 比处理 也表现出与红壤类似的规律,即褐土(1 2)处理的 S_{max}大于褐土 - 无 P 处理,而褐土(1 1)处理和褐土(2 1)处理的 S_{max}接近,均小于褐土-无 P 处理.

4 讨 论

土壤中的 As 主要以无机态存在,无机态的 As 离子被土壤胶体吸附与 Fe、Al、Ca 等离子结合形成 复杂的难溶性砷化物,因此,土壤对 As 的吸附受土 壤组分、pH值以及竞争离子等因素的影响[2]. As 常 以砷酸根阴离子的形式被土壤吸附,酸性土壤的pH 值较低,这些阴离子易与酸性土中带正电荷的土壤 胶体结合,因而酸性土壤对砷酸根阴离子的吸附性 较大. 而碱性土中带正电的土壤胶体较少, 负离子或 OH 离子较多,它们与砷酸根阴离子竞争同一吸附 位点,因此 pH 较高的土壤对砷酸根阴离子的吸附 性较小. 已有实验证明,升高 pH 值可以促进吸附态 As 的解吸^[7,8,12]. 土壤粒径大小也影响土壤对 As 的吸附,土壤粒径越小土壤的表面积越大,吸附点位 也就越多,因此对砷酸根阴离子的吸附能力越 大^[8]. 南方黄壤和红壤的 pH 值较低, 粘土含量高 (表 1) .土壤胶体表面存在较多的吸附位点 .因此对 As 的吸附能力较强: 而北方褐土则与南方的黄、红 壤相反,因此,褐土对 As 的吸附能力要小于黄壤和 红壤,这与前人的研究结果一致.

As 与 P 同属第 V 族元素,它们的化学性质相似,并且 As 在土壤中形成的化合物与 P 的化合物相似. 因此, $60~mg~kg^{-1}$ 的 P 可以降低黄壤和红壤对 As 的最大吸附量 S_{max} (图 1). 但是,对 pH = 8.07的褐土而言,添加 $20~mg~kg^{-1}$ 的 P 却能够提高褐土对 As 的 S_{max} ,分析其中的原因可能是 OH 参与了 As 的专性吸附过程,即土壤胶体表面的-OH 基与砷酸根离子发生阴离子配位交换 [4],因此少量的 P 不能够影响 As 在褐土中的吸附. 随着 P 浓度的提高,褐土 (1 1) 处理和褐土 (2 1) 处理的 S_{max} 显著低于褐土 (1 2) 处理,表明高浓度的 P 仍然能够抑制 As 在褐土中的吸附. Alam 等在用磷酸盐去除污染土壤中 As 的研究中也观察到添加的磷酸盐浓度越高,As 的去除率也越高 [1]. 由此可见,较高浓度的 P 可以减少土壤对 As 的吸附.

此外,土壤对 As 的吸附能力还受吸附质中 As

和 P 浓度比的影响. 当吸附质中 P As = $1\ 2$ 时 , 3 种 土壤对 As 的 S_{max} 显著高于 P As = $1\ 1$ 和 P As = $2\ 1$ 的处理 ,并且后两者差异不显著. 由此可以推断,土壤中的一些吸附点位对 P 具有较强的亲和性 , 当吸附质中存在足够的 P 时 ,这些点位首先被 P 占据 ,因此在后两种处理中 ,As 的 S_{max} 差异并不显著. 如果没有足量的 P 占据这些吸附点位 ,如在 P As = $1\ 2$ 的处理中 ,As 在 3 种土壤中的 S_{max} 就能够达到相对较大的值. 这从另一个角度再次证实了 P 的确能够与 As 竞争土壤表面的吸附点位 ,同时这些吸附点位对 As 和 P的亲和性具有一定的差异.

参考文献

- 1 Alam MGM, Tokunaga S, and Maekawa T. 2001. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere, 43 1035 ~ 1041
- 2 Chen T-B (陈同斌), Liu GL (刘更另). 1993. Effects of soil pH in arsenic adsorption in soil and its toxicity to rice (*Oryza sativa* L.). *Sci A gric Sin* (中国农业科学), **26**(1):63~68 (in Chinese)
- 3 Chen TB, Fan ZL, Lei M, et al. 2002. Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication. Chin Sci Bull, 47 (22) 1876 ~ 1879
- 4 Chen TB, Wei CY, Huang ZC, et al. 2002. Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull, 47(11) 902 ~ 905
- 5 Chen TB. 1994. Arsenate adsorption in soil and its mechanism. Chin Environ Sci ,5(1) $85 \sim 91$
- 6 Chen T-B (陈同斌), Zhang X-N (张效年), Zhang H(张 宏). 1993. Effect of phosphate and arsenate adsorption on zeta-potential of laterite colloid. *J South Chin Agric Univ* (华南农业大学学报), **14**(1):24~27 (in Chinese)
- 7 Jackson BP, Miller WP. 2000. Effectiveness of phosphate and hydroide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Amer J, 64 1616 ~ 1622.
- 8 Lombi E , Sletten RS , Wenzel WW. 2000. Sequentially extracted arsenic from different size fractions of contaminated soils. Water Air Soil Pollut ,124 (3 ~ 4) 319 ~ 332
- 9 Melamed R Jurinak JJ ,Dudley LM. 1995. Effect of adsorbed phosphate on transport of arsenate through an Oxisol. Soil Sci Soc Amer J ,59 (5) 1289 ~ 1294
- 10 Peryea FJ. 1998. Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions. Hortscience, 33(5) 826~829
- 11 Qafoku NP, Kukier U, Sumner ME, et al. 1999. Arsenate displacement from fly ash in amended soils. Water Air Soil Pollut, 114 (1-2) 185~198
- 12 Seaman JC, Arey JS, Bertsch PM. 2001. Immobilization of nicked and other metals in contaminated sediments by hydroxyapatite addition. J Environ Qual, 30 460 ~ 469
- 13 Wei C-Y (韦朝阳), Chen T-B (陈同斌). 2001. Hyperaccumulators and phytoremediation of heavy metal contaminated soil a review of studies in China and abroad. Acta Ecol Sin(生态学报), 21 (7) 1196~1203 (in Chinese)

作者简介 雷 梅,女,1973年生,博士,助理研究员,主要 从事污染生态学、环境化学等方面的研究,现已发表论文 10 篇. E-mail leim @igsnrr. ac. cn. Tel:010-64889684