翟丽梅,陈同斌,廖晓勇,等. 2008,广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其特征[J].环境科学学报,28(6):1206-1211

Zhai L M, Chen T B, Liao X Y, *et al* 2008. Pollution of agricultural soils resulting from a tailing spill at a Pb-Zn mine: A case study in Huanjiang, Guangxi Province [J]. Acta Scientiae Circum stantiae, 28 (6): 1206 - 1211

广西环江铅锌矿尾砂坝坍塌对农田土壤的污染及其 特征

翟丽梅^{1,2},陈同斌^{1,*},廖晓勇¹,阎秀兰¹,王莉霞^{1,2},谢华^{1,2}

1. 中国科学院地理科学与资源研究所环境修复中心,北京 100101

2 中国科学院研究生院,北京 100049

收稿日期: 2006-12-22 录用日期: 2008-02-26

摘要:广西环江县因铅锌金属矿区尾砂坝坍塌导致大面积农田污染甚至绝收.为此,对矿区下游污染区和非污染区的农田土壤、尾砂和河流沉 积物进行了系统调查和研究.调查结果表明,农田遭受 A & Pb, Zn和 Cd污染,土壤酸化严重,pH值最低至 2 5,全硫含量高达 2 29 %. X衍射 鉴定结果表明,受污染土壤中存在大量硫铁矿,这是导致土壤酸化的主要物质.由于强酸性淋溶作用的影响,污染农田中 La, Ce和 Nd等稀土元 素发生明显的向下淋溶现象,导致表层土壤 La, Ce和 Nd元素含量明显低于未污染农田.从土壤剖面分布来看,污染点的土壤中 A & Pb和 Zn仍 主要集中分布在表层 0~30 cm范围,发生土壤酸化现象的土层深度仍局限于 0~70 cm范围.

关键词:矿业活动;重金属;稀土;酸化;土壤;河流沉积物;尾砂;硫铁矿

文章编号: 0253-2468(2008)06-1206-06 中图分类号: X53

Pollution of agricultural soils resulting from a tailing spill at a Pb-Zn mine: A case study in Huanjiang, Guangxi Province

文献标识码:A

ZHA IL inei^{1,2}, CHEN Tongbin^{1,*}, L'AO Xiaoyong¹, YAN Xiulan¹, WANG Lixia^{1,2}, X IE Hua^{1,2}

1. Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101

Graduate University of Chinese Academy of Sciences, Beijing 100049
Received 22 December 2006; accepted 26 February 2008

Abstract: The collapse of the tailing dam in the Beishan Pb/Zn M ine of Huanjiang, Guangxi Province led to the spread of mining waste on the fam land along the Huanjiang R iver Samples of polluted soil, unpolluted soil, m ine tailing and river sediments were analyzed for pH, S content, heavy metals and rare earth elements in surface soil and soil depth profiles to assess the level of soil pollution. The results show that the polluted soils had increased concentrations of A s, Pb, Zn and S and decreased pH, La, Ce and Nd. The maximum concentration of total soil S increased up to 2. 29 % and the initial oxidation of metal sulphides from pyrite residues reduced the soil pH to extremely acidic (pH = 2. 5). Five years after the spill, there were still high concentrations of FeS₂ in the soils, as identified by X-ray diffraction. The lower concentrations of La, Ce and Nd in the polluted soils than in the unpolluted soils resulted from leaching to deeper layers of the soil profile under the acidic conditions. The elevated concentrations of A s, Pb, Zn were only found in the upper soil layer, up to 30 cm deep, indicating that the leaching of heavy metals was minimal under the local subtropical conditions. The maximum depth of decreased soil pH, resulting from spills of tailings containing pyrite, was in the upper 70 cm of the polluted soils. **Keywords:** acidification; heavy metal; mining; pyrite; rare earth element; sediment; soil; tailing

土地污染,使下游土地的重金属含量升高,土壤酸

化,有机质含量降低和土壤板结 (Simon et al,

1999). 例如:西班牙南部的 Aznalcollar硫铁矿尾砂

坝坍塌曾导致 Agrio和 Guadiamar流域 55 km²范围

1 引言 (Introduction)

矿山尾砂库垮坝导致的污染物迁移和扩散,不 仅威胁人体健康和生命安全,而且会导致大面积的

基金项目:国家杰出青年科学基金(No. 40325003)

Supported by the National Science Fund of China for Distinguished Young Scholar (No. 40325003) 作者简介: 翟丽梅 (1978—),博士研究生; *通讯作者 (责任作者), E-mail: chentb@igsnrr ac cn Biography: ZHA IL inei (1978—), Ph D. candidate; * Corresponding author, E-mail: chentb@igsnrr ac cn 内的土壤受到重金属污染,土壤 Pb、Zn、As、Cd和 Cu的含量分别增加到 1786、1449、589、5.9和 420 mg·kg⁻¹(Simon *et al*, 1999),受污染土壤的 pH值 最低可以下降到 2 0 (Clemente *et al*, 2003; Aguilar, *et al*, 2004). 1985年,湖南郴州柿竹园矿 区尾砂坝坍塌,致使尾砂冲入东河两岸农田,即使 沿岸农田中的尾砂已被清理,该地区农田土壤的 As 和 Cd含量仍然高达 709和 7.6 mg·kg⁻¹(Liu *et al*, 2005).

矿山尾砂坝坍塌是一种较常见的事故,但对其 导致下游土地污染问题至今仍较少研究.2001年, 广西大环江上游的铅锌硫铁矿山的尾砂坝坍塌,尾 砂冲入沿江的农田土壤中,导致沿江大面积农田寸 草不生.本研究以该污染事件为例,主要探讨了尾 砂坝坍塌对下游农田土壤的污染特征,以期为土壤 污染控制和污染农田修复提供科学依据.

2 材料与方法 (Materials and methods)

2.1 研究区域与采样

研究区域环江毛南族自治县位于广西西北部、 地处云贵高原东南缘、地理位置为东经 107 51 ~ 108 43,北纬 24 44 ~ 25 33. 总地势为北高南低, 四周山岭绵延,中部偏南为丘陵,最高海拔为 1693m.最低海拔为 149m.本研究采集尾砂、河流沉 积物、受污染农田土壤和非污染区农田土壤等 4类 样品. 尾砂样品 (编号 TL)采自坍塌的铅锌硫铁矿尾 砂库 .污染区农田土壤取自尾砂坝下游受污染面积 较大的典型污染区 (土壤样品从下游至中游编号分 别为: PS1、PS2、PS3、PS4和 PS5),河流沉积物采自 受污染农田对应地点(编号分别为: RS1、RS2和 RS4),并在所调查的污染点附近采集对照样(编号 分别为: UP1和 UP2) (图 1). 尾砂和农田表层 (0~ 20 cm)土壤样品采用 5点混合法取样.并在污染农 田和未污染农田中分别采集 3个土壤剖面样 (按照 0~20,20~40,40~60,60~80和 80~100 cm 厚度 分层取样).土壤样品风干,过 20目和 100目筛,保 存待测.

2.2 样品分析

将土壤和尾砂样品风干,过 100目筛,然后用 HNO₃-H₂O₂消化待测(陈同斌等, 2002).As用原子 荧光光度计(AFS-2202,海光仪器公司)测定,其它 元素采用 ICPMS(PQ-ExCell, TJA Solutions, USA) 测定.采用国家土壤标准样品 CBW-07401作为分析

图 1 广西环江农田污染调查取样点分布图

质量控制,其分析误差在允许范围内.土壤 pH值测 定所用的水土比为 1 2 5 (鲁如坤, 1999).土壤总硫 采用红外碳硫仪 (HWF-900A,无锡高速分析仪器 厂)测定 (Clark *et al*, 1996).

2.3 矿物鉴定

将过 0.25 mm 筛的尾砂和土壤样品制成胶体 样,分别制成粉末压片进行矿物鉴定.XRD分析的 测定条件为:FeK 辐射,管压 40 kV,管流 20 mA,扫 描速度分别为 0.02 %5s(冯雄汉等, 2005).

3 结果与分析 (Results and analysis)

3.1 土壤全硫和酸化状况

由表 1可见,供试的 5个污染土壤均呈强酸性, 其中 PS1的 pH值最低降至 2.5;污染区土壤的硫含 量为未污染区 (对照)土壤的 7.5~458倍,污染土 壤中硫含量最高达到 2.29%. PS1中土壤硫含量是 同一地点的未污染农田 (UP2)的 26.8倍.本研究 中,污染农田的酸化问题不仅仅局限于矿区附近, 最远一点 (PS1)位于矿山下游 50 km处.这说明,在 河流的搬运作用下,尾砂坝坍塌可以造成大范围的 土壤污染.这种由含硫废弃物造成土壤严重酸化现 象,是矿山污染的一个重要特征.例如:根据李勇涛 等 (2004)对广东省北部的大宝山铜硫矿、褐铁矿及 铅锌矿露天采矿区下游约 6 km处的农田土壤进行 调查,由于长期采用含硫矿山酸性废水进行灌溉曾 导致土壤 pH值降低到 2.2 X射线衍射技术鉴定表明,尾砂中存在大量还 原态硫,主要为 FeS₂和 ZnS 在污染农田的土壤 (PS1)中也同样存在 FeS₂,而在与 PS1点对应的未 污染农田土壤 (UP1)中未检测出还原态硫 (图 2). 由此可见,污染土壤中总硫含量的增加是由于高含 硫量的尾砂进入农田所导致的结果.含硫尾砂进入 农田后,还原态硫在适当的湿度和通气条件下可以 氧化形成硫酸,导致土壤 pH值下降 (表 1) (Gissinger et al, 1998; Xu et al, 2000; Simon et al, 2001)

Fig 2 X-ray diffraction patterns in the tailing, and contaminated and uncontaminated soils

表 1	调查区农田土壤	S含量和	pH值
-----	---------	------	-----

Table 1 Concentration of S and pH in agricultural soils and mine tailings

in Huanji	ang, Guangxi Pi	ovince	
样品类型 Type of sample	样品编号 Sample No.	$S/(g \cdot kg^{-1})$	pH
尾砂	TL	>100	6.10
污染农田	PS1	14. 20	2.50
	PS2	17.70	2.91
	PS3	4. 00	3. 65
	PS4	9. 70	3. 05
	PS5	22.90	2.84
未污染农田	UP1	< 0. 05	6. 25
	UP2	0. 53	5. 52
河流沉积物	R S1	9. 75	6.09
	R S2	13.00	5. 71
	R.S4	17. 30	5.07

表 2列举的 17种元素中,尾砂样品的 A & Cd, Pb, Zn和 Cu含量明显高于河流沉积物、污染土壤和 未污染土壤.根据对所有污染点(PS1、PS2、PS3、PS4 和 PS5)的元素含量分析结果,农田土壤中的主要重 金属污染物为 A & Cd, Pb和 Zn; Cu含量也呈升高的 趋势,但未达到污染水平.在环江上游的铅锌硫铁 矿中,这几种重金属含量分别为:锌 44910 mg·kg⁻¹、铅 7050 mg·kg⁻¹、镉 130 mg·kg⁻¹、砷 250 mg·kg⁻¹(广西通志地质矿产志,1992).沉积物中 的主要污染物种类与污染土壤基本相同,但其平均 含量远远高于污染土壤,分别是污染土壤的 1.9、 9.5、1.7和 3.6倍.与 2个未污染土壤的平均含量 相比,5个污染点的土壤 A & Cd, Pb和 Zn平均含量 分别是未污染土壤的 2.8、3.0、14和 5.9倍.

对稀土元素的测定结果表明(图 3),尾砂 (TL)、污染土壤(PS)、未污染土壤(UP)和河流沉积 物(RS)中稀土元素的分布模式大致类似,La,Ce和 Nd在表层中含量较高,尤其是 Ce的含量最为明显. 这可能由于在成土过程中,Ce等 3种稀土元素容易 在表层土壤中相对富集的缘故(Wei*et al*,2001). 但是,从不同类型样品中的含量来看,这 3种稀土元 素在尾砂中含量相对最低,未污染土壤中含量相对 最高,污染土壤和河流沉积物中的含量居中.污染 土壤中的La,Ce和 Nd含量明显低于未污染土壤, 其原因可能是:这些原来已经富集在土壤表层中的 稀土元素对土壤酸化比较敏感,在酸性条件下淋溶 迁移能力增强而淋溶到土体的下层土壤中,其淋溶 强度依次为 Ce & La & Nd(曹心德等,2002). 6期

表 2 尾矿、污染点和未污染点土壤表层 (0~20 cm)的元素含量

Table 2 Elemental concentrations of the tailings, uncontaminated and contaminated soils of surface layer (0 ~ 20 cm)

样品				:	元素含量 E	Elemental o	concentration	/(mg·kg ⁻¹)			
Samp le		As	Cd	Pb	Zn	Cu	Ni	Mo	Cr	Ag	Co
尾砂	TL	124. 0	49.60	2621. 0	18060. 0	340. 0	46.9	13. 60	5. 70	8. 29	9. 20
河流沉积物	RS1	63. 6	16.00	1098.0	3011. 0	45.5	49.4	13. 50	37.00	0. 20	16.90
	RS2	46.2	9.80	845. 0	1820. 0	36.3	25. 5	13.80	16.60	0.40	9.60
	RS4	93. 8	8.90	974. 0	1785. 0	30. 8	21. 6	14.60	18.80	1. 10	6.80
污染农田土壤	PS1	37. 9	2.06	798.0	803. 0	52.0	21. 6	2.61	22. 90	1. 05	4.90
	PS2	22. 7	0. 68	544. 0	523. 0	33. 8	15. 8	11. 00	23. 70	0. 25	3. 52
	PS3	29. 3	1. 38	650. 0	591. 0	51.0	24. 2	2.07	29.80	0. 79	9.50
	PS4	37.4	0.40	508. 0	387. 0	63. 4	10. 5	15.00	17.80	0. 60	2.80
	PS5	47.9	1. 52	427. 0	734. 0	59.0	25. 6	2 54	19.00	0. 00	7.50
未污染农田土壤	UP1	8.9	0. 42	42.0	88. 0	15. 0	11. 8	0. 90	23. 80	0. 09	3. 50
	UP2	16.0	0. 37	43. 0	119. 0	28.0	12.6	0. 57	34. 80	0. 06	3. 30
	_				元素含量 E	lemental	concentration	/(mg·kg ⁻¹)	$\mathbb{N} \subseteq$		
样品 Sample	-	Li	Be	Sc	元素含量 E V	Elemental	concentration B i	/ (mg·kg ⁻¹) Th	Sb	Y	U
样品 Sample 尾砂	- TL	Li 2. 40	Be 0. 00	Sc 6. 97	元素含量 E V 9.8	Elemental o	B i 1. 42	/(mg·kg ⁻¹) Th 34. 20	Sb 8. 33	Y 2. 31	U 3. 09
样品 Sample 尾砂 河流沉积物	TL RSI	Li 2 40 60 40	Be 0. 00 2. 30	5c 6. 97 7. 80	元 <u>素含量 E</u> V 9. 8 88. 2	Elemental o 30 20	B i 1. 42 1. 40	/ (mg·kg ⁻¹) Th 34. 20 9. 50	Sb 8 33 0 30	Y 2. 31 23. 60	U 3. 09 2. 30
样品 Sample 尾砂 河流沉积物	TL RS1 RS2	Li 2 40 60 40 22 40	Be 0. 00 2. 30 1. 20	5c 6. 97 7. 80 3. 80	元素含量 E V 9.8 88.2 45.3	Elemental 6 30 20 30	Bi 1. 42 1. 40 0. 70	/(mg·kg ⁻¹) Th 34. 20 9. 50 5. 60	Sb 8 33 0 30 0 20	Y 2. 31 23. 60 12. 60	U 3. 09 2. 30 1. 30
样品 Sample 尾砂 河流沉积物	TL RS1 RS2 RS4	Li 2 40 60 40 22 40 27.60	Be 0. 00 2. 30 1. 20 0. 80	Sc 6. 97 7. 80 3. 80 3. 50	元素含量 E V 9.8 88.2 45.3 45.2	Elemental 6 30 20 30 20	Example 1 and 1 an	/ (mg·kg ⁻¹) Th 34. 20 9. 50 5. 60 5. 30	Sb 8 33 0 30 0 20 0 40	Y 2 31 23 60 12 60 9 40	U 3. 09 2. 30 1. 30 1. 30
样品 Sample 尾砂 河流沉积物 污染农田土壤	TL RSI RS2 RS4 PS1	Li 2 40 60 40 22 40 27. 60 32 20	Be 0. 00 2. 30 1. 20 0. 80 0. 00	5c 6, 97 7, 80 3, 80 3, 50 5, 07	元素含量 E V 9.8 88.2 45.3 45.2 34.7	Elemental 6 30 20 30 20 70	Bi 1.42 1.40 0.70 0.40 0.60	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 30 2. 31	Sb & 33 0 30 0 20 0 40 0 46	Y 2. 31 23. 60 12. 60 9. 40 5. 72	U 3. 09 2. 30 1. 30 1. 30 1. 00
样品 Sample 尾砂 河流沉积物 污染农田土壤	TL RS1 RS2 RS4 PS1 PS2	Li 2 40 60 40 22 40 27 60 32 20 57 90	Be 0.00 2.30 1.20 0.80 0.00 0.67	5c 6. 97 7. 80 3. 80 3. 50 5. 07 4. 50	元素含量 E V 9.8 45.3 45.2 34.7 49.0	Elemental 6 30 20 30 20 70 00	Bi 1.42 1.40 0.70 0.40 0.60 0.42	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 60 5. 30 2. 31 5. 95	Sb 8 33 0 30 0 20 0 40 0 46 0 00	Y 2 31 23 60 12 60 9 40 5 72 6 89	U 3.09 2.30 1.30 1.30 1.00 0.94
样品 Sample 尾砂 河流沉积物 污染农田土壤	TL RSI RS2 RS4 PS1 PS2 PS3	Li 2 40 60.40 22 40 27.60 32 20 57.90 39.10	Be 0.00 2.30 1.20 0.80 0.00 0.67 0.84	5c 6, 97 7, 80 3, 80 3, 50 5, 07 4, 50 6, 60	元素含量 E V 9.8 88.2 45.3 45.2 34.7 49.0 41.9	Clemental & 80 20 30 20 20 20 70 20 20 20 20 20 20 20 20 20 20 20 20 20	Bi I. 42 1. 40 0. 70 0. 70 0. 40 0. 60 0. 42 0. 48 48 48	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 60 5. 30 2. 31 5. 95 1. 70	Sb 8 33 0 30 0 20 0 40 0 46 0 00 0 00	Y 2. 31 23. 60 12. 60 9. 40 5. 72 6. 89 6. 40	U 3. 09 2. 30 1. 30 1. 30 1. 00 0. 94 1. 53
样品 Sample 尾砂 河流沉积物 污染农田土壤	TL RS1 RS2 RS4 PS1 PS2 PS3 PS4	Li 2 40 60 40 22 40 27, 60 32 20 57, 90 39, 10 30, 70	Be 0.00 2.30 1.20 0.80 0.00 0.67 0.84 0.50	5c 6. 97 7. 80 3. 80 3. 50 5. 07 4. 50 6. 60 3. 30	元素含量 E V 9.8 88.2 45.3 45.3 34.7 49.0 41.9 41.5	Clemental & 30 20 30 20 70 70 90 90 70	Bi 1.42 1.40 0.70 0.40 0.60 0.42 0.48 0.30	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 30 2. 31 5. 95 1. 70 6. 50	Sb 8 33 0 30 0 20 0 40 0 46 0 00 0 00 0 10	Y 2. 31 23. 60 12. 60 9. 40 5. 72 6. 89 6. 40 4. 40	U 3.09 2.30 1.30 1.30 1.00 0.94 1.53 0.60
样品 Sample 尾砂 河流沉积物 污染农田土壤	TL RS1 RS2 RS4 PS1 PS2 PS3 PS4 PS5	Li 2 40 60 40 22 40 27 60 32 20 57 90 39 10 30 70 25 50	Be 0.00 2.30 1.20 0.80 0.00 0.67 0.84 0.50 1.03	5c 6. 97 7. 80 3. 80 3. 50 5. 07 4. 50 6. 60 3. 30 5. 62	元素含量 E V 9.8 88.2 45.3 45.3 45.2 34.7 49.0 41.5 49.0 41.5	Clemental & 30 20 30 20 20 70 20 70 20 70 20 70 20 00	Bi 1.42 1.40 0.70 0.40 0.60 0.42 0.48 0.30 1.66	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 30 2. 31 5. 95 1. 70 6. 50 4. 00	Sb 8 33 0 30 0 20 0 40 0 46 0 00 0 10 0 00	Y 2. 31 23. 60 12. 60 9. 40 5. 72 6. 89 6. 40 4. 40 4. 84	U 3. 09 2. 30 1. 30 1. 30 1. 00 0. 94 1. 53 0. 60 0. 73
样品 Sample 尾砂 河流沉积物 污染农田土壤 未污染农田土壤	TL RSI RS2 RS4 PS1 PS2 PS3 PS4 PS5 UP1	Li 2 40 60 40 22 40 27, 60 32 20 57, 90 39, 10 30, 70 25, 50 25, 80	Be 0.00 2.30 1.20 0.80 0.00 0.67 0.84 0.50 1.03 0.85	5c 6. 97 7. 80 3. 80 3. 50 5. 07 4. 50 6. 60 3. 30 5. 62 3. 74	元素含量 E V 9.8 88.2 45.3 45.3 45.3 45.4 34.7 49.0 41.9 41.5 22.9 38.7	Clemental & 30 20 30 20 70 70 90 70 90 70 90 70 90	Bi 1.42 1.40 0.70 0.40 0.60 0.42 0.48 0.30 1.66 0.24	/(mg·kg ⁺¹) Th 34. 20 9. 50 5. 60 5. 30 2. 31 5. 95 1. 70 6. 50 4. 00 0. 90	Sb 8 33 0 30 0 20 0 40 0 40 0 46 0 00 0 10 0 00 0 00 0 00	Y 2. 31 23. 60 12. 60 9. 40 5. 72 6. 89 6. 40 4. 40 4. 84 6. 56	U 3.09 2.30 1.30 1.30 1.00 0.94 1.53 0.60 0.73 0.50

图 3 调查区尾砂和表层土壤中稀土元素的分布模式

Fig 3 Distribution patterns of rare earth elements in soils and tailing of Huanjiang, Guangxi Province

3.2 土壤 pH和重金属的剖面分布

对污染较重的 PS1和 PS5样点的土壤剖面分析 结果表明,其土壤酸化现象分别集中在 0~30 cm和 0~70 cm层次,更深层次的土壤 pH则并未受到明 显的影响 (图 4e). 从图 4a、图 4b和图 4d中元素的 剖面分布可以看出,As、Pb和 Zn主要分布在表层土 壤 (0~30 cm)范围内,其在下层土壤的污染并不明 显. 从图 4c可以看出,污染样点 PS1和 PS5的表层 土壤 Cd含量均在 2 mg·kg⁻¹以上,存在明显的污染 现象;但 Cd含量在上下各层之间并无明显剖面分 布规律.

从上述关于土壤重金属剖面分布的研究结果 来看,当地的土壤重金属污染基本上局限于植物根 系分布比较密集的表层,因此,可以考虑采用植物 富集技术 (phytoextraction)进行修复.如:可以采用 重金属超富集植物蜈蚣草 (*Pteris vittata* L)富集土 壤中的 As和 Zn等重金属(陈同斌等, 2002; An *et al*, 2006).

图 4 污染农田与未污染农田中土壤重金属和 pH的剖面分布

Fig 4 Heavy metals and pH profiles of the contaminated and uncontaminated soils

4 结论 (Conclusions)

1210

1)广西环江县因铅锌硫铁矿尾砂坝坍塌导致 大环江流域农田遭受 As Pb, Zn和 Cd污染;并且因 带入大量的 FeS₂和 ZnS而导致严重的土壤酸化问 题,使 La, Ce和 Nd等稀土元素发生明显的向下淋 溶现象.

2)从土壤的剖面分布来看,污染点的土壤中 As,Pb和 Zn仍主要集中分布在表层 0~30 cm 范 围,发生土壤酸化现象的土层厚度为 0~70 cm.

责任作者简介:陈同斌,博士生导师、研究员,中国科学院地 理科学与资源研究所环境修复研究中心主任,主要从事植物 修复、固体废弃物堆肥、区域土壤环境质量与风险评估研究. 主持 "863 课题、"973 课题、国家杰出青年科学基金项目等 40多项,发表论文近 200篇,获发明专利 18项.

References:

- An Z Z, Huang Z C, Lei M, et al 2006. Zinc tolerance and accumulation in *Pteris vittata* L. and its potential for phytoremediation of Zn and As-contaminated soil [J]. Chemosphere, 62(5): 796—802
- Aguilar J, Dorronsoro C, Ferna ndez E, et al 2004. Soil pollution by a pyrite mine spill in Spain: Evolution in time [J]. Environmental Pollution, 132: 395–401
- Cao X D, Ding Z H, Hu X, et al 2002 Effects of soil pH value on the bioavailability and fractionation of rare earth elements in wheat seedling (*Triticum aestivum* L.) [J]. Environmental Science, 23 (1): 97-102 (in Chinese)
- Chen T B, Wei C Y, Huang Z C, et al 2002a Arsenic

J

hyperaccumulator Pteris vittata L. and its arsenic accumulation [J]. Chinese Science Bulletin, 47(11): 902–905

- Chen T B, Fan Z L, Lei M, et al 2002b Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication [J]. Chinese Science Bulletin, 47 (22): 1876—1879
- Clark M W, Lancaster G, McConchie D. 1996. Total sulphide acidity for the definition and quantitative assessment of the acid sulphate hazard: Simple solution or a new suite of problems [J]. The Science of the Total Environment, 183 (3): 249-254
- Clemente R, Walker D J, Roig A, et al 2003. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcollar (Spain) [J]. Biodegradation, 14: 199–205
- Complication Committee of Guangxi Chorography. 1992. Guangxi Provincial Chorography [M]. Nanning: Guangxi People s Press, 167 (in Chinese)
- Feng X H, Zhai L M, Tan W F, et al 2005. The syntheses of several Mn oxide minerals and their adsorption and redox characteristics for heavy metals [J]. Acta Petrobgica et Minerabgica, 24(6): 531-538 (in Chinese)
- Gissinger P B, Alnot M, Ehrhardt J J, et al 1998. Surface oxidation of pyrite as a Function of pH [J]. Environmental Science and Technology, 32: 2839-2845
- Li Y T, Thierry B, C cile Q, et al 2004. Effects of heavy metals on microbial biomass and activity in subtropical paddy soil contaminated by acid mine drainage [J]. Acta Ecologica Sinica, 24 (11): 2430—2436 (in Chinese)
- Liu H Y, Probst A, Liao B H. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China) [J]. The Science of the Total Environment, 339: 153— 166
- Lu R K 1999. AnalyticalMethod of SoilAgro-chemistry [M]. Beijing: Chinese Agriculture Science and Technology Press, 13-14 (in

Chinese)

- Simon M, Ortiz I, Garcia I, et al 1999. Pollution of soils by the toxic spill of a pyrite mine (Aznakollar, Spain) [J]. The Science of the Total Environment, 242 (1-3): 105-115
- Simon M, Mart? n F, Ortiz I, et al 2001. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine [J]. The Science of the Total Environment, 279: 63—74
- Wei Z G, Yin M, Zhang X, et al 2001. Rare earth elements in naturally grown fem *D icranopteris linearis* in relation to their variation in soils in South-Jiangxi region [J]. Environmental Pollution, 114: 345–355
- Xu T F, White S P, Pruess K, et al 2000. Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems [J]. Transport in Porous Media, 39: 25-56

中文参考文献:

- 曹心德,丁竹红,胡忻,等.2002.土壤酸度对稀土元素在小麦体内 的生物可利用性及分馏效应的影响[J].环境科学,23(1): 97—102
- 陈同斌, 韦朝阳, 黄泽春, 等. 2002a 砷超富集植物蜈蚣草及其对 砷的富集特征 [J]. 科学通报, 47(3): 207—210
- 陈同斌,范稚莲,雷梅,等. 2002b 磷对超富集植物蜈蚣草吸收砷 的影响及其科学意义 [J]. 科学通报,47(8):1156—1159
- 冯雄汉, 翟丽梅, 谭文峰, 等. 2005. 几种氧化锰矿物的合成及其对 重金属的吸附和氧化特性 [J]. 岩石矿物学杂志, 24 (6): 531—538
- 广西壮族自治区地方志编纂委员会编. 1992. 广西通志 ——地质矿 产志 [M]. 南宁: 广西人民出版社, 167
- 鲁如坤主编. 1999. 土壤农业化学分析方法 [M]. 北京:中国农业科 技出版社, 13—14
- 李勇涛, Thierry Becquer, Céile Quantin 2004. 酸性矿山废水污染 的水稻田土壤中重金属的微生物学效应 [J]. 生态学报, 24 (11): 2430—2436