钙对聚合氯化铝中铝形态分布及结构形貌的影响

赵华章 葛晓鹏 栾兆坤 蒋展鹏

(清华大学环境科学与工程系,北京100084;中国科学院生态环境研究中心环境水质学国家重点实验室,北京100085.

E-mail: zhz@tsinghua.edu.cn)

摘要 聚合氯化铝(PAC)的絮凝性能与其铝形态分布和结构密切相关, Al₁₃形态是 PAC的最佳絮凝形态. 通过碱化反应前加 Ca 和碱化反应后加 Ca 两种方式合成了含钙 PAC,采用²⁷Al 核磁共振(NMR)和原子 力显微镜(AFM)研究了 Ca 的加入对 PAC 中铝形态的影响.结果表明,由于钙形态与铝形态间的电荷斥 力以及二者形成的络合物, Ca 的加入可增加产品中 Al_m和 Al₁₃的含量,并使 Al_m和 Al₁₃形态在 NMR 谱 图中的化学位移降低.随着 Ca/Al 摩尔比的增大,铝形态趋于分散,聚集状态由枝状聚集转向团粒状聚 集,且团粒粒径逐渐变小,在高 Ca/Al 摩尔比时形成絮状物. Ca 的引入使 PAC 中 Al₁₃含量增加,这必将 增加 PAC 在水处理中的絮凝效能.

关键词 Al13 形态 铝形态分布 结构形貌 含钙聚合氯化铝

聚合氯化铝(PAC)是当前水处理混凝技术领域中 应用最为广泛的无机高分子絮凝剂,其絮凝性能与其 铝形态的性质及含量密切相关.PAC 实际是铝离子水解 -聚合-沉淀反应过程的动力学中间产物,普遍认为 PAC 中仅存在数种可以直接相互转化的形态,如单体(Al³⁺, Al(OH)²⁺和 Al(OH)₂⁺)、二聚体(Al₂(OH)₂⁴⁺)、聚十三铝 (AlO₄Al₁₂(OH)₂₄(H₂O)₁₂⁷⁺,简称 Al₁₃)及更高聚合物^[1]. 其中纳米 Al₁₃形态(单分子粒度仅为 2.5 nm)由于具有 极强的电中和性能,是 PAC 中的最佳凝聚絮凝形态, 其含量反映了制品的絮凝效能^[1].目前 Al₁₃形态已得 到国内外研究者的高度关注,对其研究已不仅局限 于水处理混凝领域,还扩展到了水化学、土壤化学、 地球化学及材料科学等领域^[2~5].

PAC 中含有的阴阳离子会对铝形态的性质和含 量产生影响,最终影响到PAC的絮凝效能.目前阴离 子(如 SO₄²⁻, SiO₃²⁻, PO₄³⁻等)的影响研究较多^[6-9],而 阳离子的影响研究较少.PAC 的合成或生产过程中常 采用铝酸钙为碱化剂,因此产品中通常存在一定量 的钙.弄清 Ca 对铝形态的影响对 PAC 的基础理论研 究以及 Al₁₃ 形态在产品及水处理过程中的作用机制 研究具有重要意义,而这方面的研究目前尚未见报 道.

通过 ²⁷Al 核磁共振(NMR)可以鉴定出 PAC 中的 铝单体(Al_m)和 Al₁₃聚集体^[10],并可进行定量分析^[11]. 而原子力显微镜(AFM)的分辨率可达纳米级,且该技 术不受样品导电性的限制^[12].本文报道利用 ²⁷Al NMR和 AFM 研究 Ca 对 PAC 中铝形态的影响.

1 实验

() 仪器与材料. BT01-100 型恒流泵, JJ-1 型 精密定时电动搅拌器, 501 型超级恒温器, 核磁共振 谱仪(VARIAN UNITY INOVA, 500 MHz), 原子力显 微镜(Nanoscope a Multimode, 美国 DI 仪器公司).
AlCl₃ · 6H₂O, CaCl₂ · 2H₂O, NaOH 均为分析纯.

() 含钙 PAC 的合成方法. 碱化反应前加 Ca: 向 250 mL 的三口烧瓶中加入 25 mL 浓度为 2.5 mol·L⁻¹的 AICl₃ 溶液, 然后根据预定的 Ca/AI 摩尔 比加入定量的固体 CaCl₂, 再加入 50 mL 去离子水, 然后于快速搅拌下用恒流泵在 5 h 内向体系中加入 125 mL 浓度为 1 mol·L⁻¹的 NaOH 溶液. 体系温度 始终保持在 20 . NaOH 溶液加完后, 将所得溶液稀 释至 250 mL 并在 20 下静置陈化 96 h.

碱化反应后加 Ca: 向烧瓶中加入 25 mL 浓度为 2.5 mol·L⁻¹的 AlCl₃ 溶液和 50 mL 去离子水, 然后按 照碱化反应前加 Ca 的方法进行加碱、稀释和陈化. 陈化 72 h 后, 根据预定的 Ca/Al 摩尔比加入定量的固 体 CaCl₂ 并摇匀. CaCl₂ 溶解后继续陈化 24 h.

按上述两种方法合成的 PAC 的铝浓度、碱化度 (*B*)和 pH 值分别为 0.25 mol·L⁻¹(约为 1.2%, 以 Al₂O₃%计), 2.0 和 4.5. 陈化结束后取样进行 ²⁷Al NMR和AFM 测试.

()²⁷A1 NMR 测试及铝形态定量分析方法.操 作在²⁷A1 NMR 谱仪上进行.采用直径为 5 mm 的样 品管,样品管心插一毛细管,毛细管中注入浓度为 0.2 mol·L⁻¹的 NaAl(OH)₄ 溶液及同体积的 D₂O,以 作为铝含量的内标及锁场试剂.所有样品不经稀释 直接测定. 定量分析时需首先以酸化的铝标准溶液 *d* = 0的峰面积与铝浓度制作标准曲线, 然后将样品 NMR 谱图结合标准曲线即可求出样品中 Al_m, Al₁₃ 以 及未检出的铝形态(Al_u)的百分含量^[11].

() AFM 实验方法. 取约 5 μL 样品溶液滴在新 鲜剥离的云母表面,在干燥器中静置 10 h 后于室温 下在大气中进行 AFM 成像. 成像实验采用接触模式, 所有图像在恒力模式下获得,并采用"Flatten Auto" 除去慢扫描方向的低频噪音. 所用探针为商用 Si₃N₄ 探针, 微悬臂长度为 120 μm, 力常数为 0.6 N/m.

2 结果与讨论

2.1 Ca对铝形态分布的影响

对分别在碱化反应前和碱化反应后加入 CaCl₂ 且 具有不同 Ca/Al 比的 PAC 进行 ²⁷Al NMR 谱图分析, 表 1 中列出了谱中各峰的化学位移及根据面积定量 计算得到的 Al_m, Al₁₃ 和 Al_u 含量. 可以看出, 加入 CaCl₂ 后, Al_m 和 Al₁₃ 的含量均增加了, CaCl₂在碱化反 应后加入可使 Al₁₃ 含量更高. CaCl₂ 在体系中以 Ca²⁺ 和 Ca(OH)⁺的形式游离于铝形态间^[13], 由于正电荷间 的排斥作用使铝形态趋于分散而聚合倾向降低, 从 而使 Al_m 和 Al₁₃ 的含量均有升高. 这种斥力对 Al₁₃ 的 作用具有双重性, 既可阻止其形成又可阻止其进一 步聚合, 但对后者的作用更大些. 采取在碱化反应后 加入 CaCl₂ 的方式, 由于大部分 Al₁₃ 已经形成, 第一 种作用较小, 因此其 Al₁₃ 含量更高.

NMR 谱图中化学位移和峰宽的改变, 往往能反 映化合物结构和所处环境的改变. Al_m 的化学位移和 峰宽随总铝浓度(*C*_{Al_T})的升高而下降, 随 *B* 值的升高 而升高, 还随离子强度和黏度的升高而升高; 但 Al₁₃ 的化学位移和峰宽由于铝氧四面体的高度屏蔽而不

受 C_{Al_T} 和B值的影响^[14]. 在本实验中,样品的 C_{Al_T} ,B值和 pH 值均保持相同,只有离子强度随 Ca/Al 比的 增大而增大,但 Al_m和 Al₁₃的化学位移均有所下降, 说明在 Ca 的存在下 Al_m和 Al₁₃结构或所处化学环境 发生了变化. Ca²⁺可与 Al_m和 Al₁₃ 括构或所处化学环境 合^[13],形成 Al-O-Ca 结构,使 Al_m形态中的 O 发生络 合^[13],形成 Al-O-Ca 结构,使 Al_m形态中的六配位铝和 Al₁₃形态中的四配位铝的屏蔽系数降低,从而使其化学 位移减小. 分析表 1 中数据可知,加 Ca 方式(即在碱化 反应前还是在碱化反应后加入)对这种变化影响不大.

2.2 Ca对铝形态结构形貌的影响

图1是在碱化反应前加入 CaCl 而合成的具有不 同 Ca/A1 摩尔比的 PAC 的 AFM 照片. 由图中可见, 未 加入 CaCl₂ 的 PAC 均由一些小颗粒聚集而成,显示出 特殊的分形结构,这主要是 Alus 形态的聚集体^[10]. 图 2 是 AFM 模拟出的与图 1(a)相对应的三维图片. 由此可更为直观地观察到铝形态的聚集状态与结构. 由图 1 还可看出, 随着 Ca/Al 摩尔比的增大, 铝形态 趋于分散,聚集密度有所降低;其分枝现象逐渐消失, 聚集状态由枝状聚集转向团粒状聚集,且团粒粒径 逐渐由大到小. 在高 Ca/Al 摩尔比时. 铝形态的聚集 团粒已变得很小,彼此靠近形成絮状物,这是因为碱 化反应前加入的 Ca²⁺与铝形态形成铝钙络合物而包 裹在铝形态周围,从而将铝形态聚集体由枝状分割 成团粒状,如图3所示.Ca/Al摩尔比越大,分割成的 团粒越小. 铝形态枝状聚集体在被分割包裹后, 便丧 失了其原来的分枝趋势与分形结构,而是简单堆积 在一起,无特殊形状.在分割程度很大时,团粒粒径 很小,已分辨不出其中的界限,聚集密度进一步降 低,因而在 AFM 照片中表现为絮状物(图 1(d)).

Al₁₃ 形态在溶液中存在着聚集现象^[10,15]. 这种聚 集会使 Al₁₃ 进一步向高分子量形态转化,导致其电中

加 Ca 方式	Ca/Al 摩尔比 -	铝形态含量/%			化学位移		
		Al _m	Al ₁₃	Alu	内标	Al ₁₃	Alm
未加 Ca	0	7.76	52.32	39.91	80.12	62.887	0.058
	0.2	10.11	60.37	29.51	80.12	62.866	0.048
碱化反应前加 Ca	0.4	10.42	62.26	27.32	80.12	62.845	0.037
	0.6	10.52	59.80	29.67	80.12	62.834	0.037
	0.2	10.47	67.48	22.05	80.12	62.865	0.047
碱化反应后加 Ca	0.4	10.24	65.37	24.39	80.12	62.844	0.037
	0.6	10.03	63.41	26.56	80.12	62.834	0.037

表 1 加 Ca 方式及 Ca/Al 摩尔比对 PAC 铝形态含量及化学位移的影响

图 1 PAC 在不同 Ca/Al 摩尔比条件下的 AFM 照片 (a) Ca/Al = 0; (b) Ca/Al = 0.2; (c) Ca/Al = 0.4; (d) Ca/Al = 0.6

图 2 PAC (Ca/Al = 0)的三维 AFM 照片

图 3 Ca 与铝形态聚集体形成的团粒示意图

和能力降低. Ca²⁺可以特殊形式将 Al₁₃ 聚集体分割包 裹而避免其进一步聚合, 提高了 Al₁₃ 形态含量. 这可 使 PAC 具有更强的电中和能力, 在水处理中可发挥 出更高的絮凝效能^[16]. 以上 AFM 的研究结果, 较为 直观地证实了 Ca 对 PAC 的形态有重要的影响作用, 这与 ²⁷Al NMR 的研究结论相符.

3 结论

由于钙形态与铝形态间的电荷斥力以及二者形 成了络合物, Ca 的加入可增加产品中 Al_m和 Al₁₃ 的含 量,并使 Al_m和 Al₁₃形态在 NMR 谱图中的化学位移 降低.随着 Ca/Al 摩尔比的增大,铝形态趋于分散, 聚集状态由枝状聚集转向团粒状聚集,且团粒粒径 逐渐变小,在高 Ca/Al 摩尔比时形成絮状物.这种聚 集变化是 Ca 在铝形态周围形成络合物并将其枝状聚 集体分割包裹的结果. Ca 的引入增加了 PAC 中 Al₁₃ 的含量,这必将增强 PAC 在水处理中的絮凝效能.

致谢 本工作为国家自然科学基金重点资助项目(批准号: 50238020).

参考文献

- 汤鸿霄. 羟基聚合氯化铝的絮凝形态学. 环境科学学报, 1998, 18(1): 1~10
- 2 Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum

flocs in polluted streams. Science, 2002, 97 (5590): 2245 ~ 2247

- 3 Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters. Science, 1986, 232(4746): 54 ~ 56
- Sun Q, Wang Q, Yu J Z, et al. Structure and interaction mechanism in the magic Al₁₃+H₂O cluster Physical Review A, 2001, 64 (5): Art. No. 053203
- 5 Molis E, Thomas F, Faisandier K et al. Structural collapse of Al-13-intercalated montmorillonite by Na-salicylate solutions. Clay Minerals, 2001, 36 (3): 335 ~ 344
- 6 Wang D S, Tang H X, Gregory J. Relative importance of charge neutralization and precipitation on coagulation of Kaolin with PACI: Effect of sulfate ion. Environ Sci Technol, 2002, 36: 1815~1820
- 7 赵春禄,郝永俊,刘振儒,等.阴离子加聚对聚合氯化铝铁形态 和絮凝性能的影响.山西大学学报(自然科学版),2002,25(1): 54~58
- 8 Gao B Y, Yue Q Y, Wang B J. Electrophoretic nature and evaluation of poly-aluminum-chloride-sulfate (PACS) as a coagulant for water and wastewater treatment. J Environ Sci Heal A, 2003, 38(5): 897 ~ 907
- 9 高宝玉,岳钦艳,王占生,等.聚硅氯化铝(PASC)的形态分布及 转化规律 .²⁷Al-NMR 法研究 PASC 溶液中铝的形态分布.环 境化学,2000,19(1):8~12
- 10 赵华章, 栾兆坤, 苏永渤, 等. Al₁₃ 形态的分离纯化与表征. 高 等学校化学学报, 2002, 23(5): 751~755
- 11 Parker D R, Bertsch P M. Formation of the Al₁₃ tridecameric polycation under diverse synthesis conditions. Environ Sci Technol, 1992, 26(5): 914 ~ 921
- 12 Schneider J, Barger W, Lee G U. Nanometer scale surface properties of supported lipid bilayers measured with hydrophobic and hydrophilic atomic force microscope probes. Langmuir, 2003, 19 (5): 1899 ~ 1907
- 13 刘桂华,李小斌,张传福,等.含钙化合物在铝酸钠溶液中行为 的热力学讨论.轻金属,1997,(6):24~26
- 14 Kloprogge J T, Seykens D, Geus J W, et al. The effects of concentration and hydrolysis on the oligomerization and polymerization of Al() as evident from the ²⁷Al NMR chemical shifts and linewidths. J Non-Crystalline Solids, 1993, 160: 144 ~ 151
- 15 Molis E, Thomas F, Bottero J Y, et al. Chemical and structural transformation of aggregated Al₁₃ polycations, promoted by salicylate ligands. Langmuir, 1996, 12: 3195 ~ 3200
- 16 高宝玉, 岳钦艳, 王炳建, 等. 高 Al₁₃ 纳米聚合氯化铝的结构表
 征及混凝效果. 中国环境科学, 2003, 23(6): 657~660

(2004-02-17 收稿, 2004-03-26 收修改稿)