加压生物氧化法处理印染废水的动力学研究*

黄江丽¹ 赵文生¹ 施汉昌² 钱 易²

(1. 吉林化工学院环境科学与工程系, 吉林 吉林 132022;

2 清华大学环境科学与工程系 环境模拟与污染控制国家联合重点实验室,北京 100084)

摘要 加压生化法与其他处理印染废水的方法相比,具有工艺简单、耐冲击能力强、投资低、操作参数仪表控制、剩余污泥量 少等优点。探讨了在加压曝气条件下处理印染废水的生化反应机理,测定其动力学参数,建立加压生物氧化法处理印染废水的生物 氧化反应动力学模型,为印染废水的加压生化处理提供了可靠的设计与运行参数。

关键词 加压生化法 印染废水 动力学模型

印染废水是指粮 毛 化纤等天然纤维和化学纤 维纺织品在染色 印花和整理过程中所产生的废水。 目前, 印染废水的处理大多采用以生化处理为主体 的工艺, 但其设计大多根据经验数据进行, 缺乏相应 的理论依据, 不利于优化设计和操作运行的优化管 理。近年来, 生物反应过程的动力学在理论和应用方 面的研究都得到了深入的发展。加压生化法与其他 处理印染废水的方法相比, 具有工艺简单、耐冲击负 荷能力强^[1]等优点。本文为了更加明确在加压曝气 条件下印染废水生物处理的生化反应机理, 在大量 试验研究的基础上, 测定相应的动力学参数, 建立了 加压生物氧化法处理印染废水的生物氧化反应动力 学模型。该模型为印染废水加压生物处理的工业化 提供了理论依据。

1 加压生化法处理印染废水动力学参数的求定

1.1 加压曝气供氧能力分析

在气液混合过程中, 气体溶解和析出达到平衡 的条件下, 曝气器供给混合液(废水、微生物、活性污 泥等)的氧全部被微生物利用^[2]。曝气器的供氧速率 为:

$$\frac{\mathrm{d}c}{\mathrm{d}t} = \alpha K L_a \left(\beta C_{s^-} C\right) \tag{1}$$

式中: $\frac{dc}{dt}$ 为曝气器供氧速率, mg/(L · h); α 为转移 系数比; β 为废水中饱和DO 修正值; *KL* $_{\alpha}$ 为清水中 曝气器的氧传递系数, h⁻¹; *C* , 为操作温度下的清水 中饱和DO, mg/L; *C* 为混合液中实际DO, mg/L。

对于加压生物氧化法处理印染废水,修正系数 α β 可通过下述方法分别求得。 1.1.1 印染废水的α值的确定

印染废水中含有糖类等溶解性有机物质,它们 与水、气具有较强的亲合力,聚集在气、液界面上,增 加了氧传递过程的阻力,阻碍氧分子的扩散转移,造 成了 *KL*^a 的下降,为此引入了α修正系数: α= <u>KL</u>^a (式中 *KL*^a 为印染废水中曝气器的氧传递系数),图 1 所示的是脱氧清水及脱氧印染废水的充氧曲线 (自制的曝气池体积 5 L,曝气量 30 L/h,水温 20

,采用微孔扩散器)。以 20 为例,对数据进行处 理。以 lg[(*Cs*- *C*₀)/(*Cs*- *C*)]对时间作图得一直线, 其中 *C*₀ 为 20 时水中的DO (m g/L),其斜率即为 *KL*_a。经计算分别求得 20 时,*KL*_a=82 8 h⁻¹, *KL*_{av} = 62 6 h⁻¹。则印染废水的 α= 62 6/82 8= 0.76。

1.1.2 印染废水β值的确定

氧在水中的饱和溶解度受到水质特性的影响, 主要是水中所含物质的影响。印染废水中含有大量 的有机物及少量无机盐,因此氧在印染废水中的饱 和溶解度会低于在蒸馏水中的饱和溶解度。

β值的测定:用脱氧清水及经消毒或氯化汞和 硫酸铜抑制的印染废水曝气至饱和,测清水饱和 DO和印染废水的饱和DO,其比值即为β值,即β = $\frac{C_{ss}}{C_{ss}}$,(式中 C_{ss} 为印染废水中饱和DO),图2所示

 C_s , (以中 C_s , 为印来发尔中他和DO), 图 2 m 为不同温度条件下, 氧在清水及印染废水中的饱和 溶解度。通过图中数据计算得 20 时 β = 6.7/9.17 = 0.67。

按式(1)计算: $\frac{dc}{dt}$ = 0 76*KL*_a(0 67*C*_s- *C*)。由此 可知: 为了满足加压生物氧化法的高耗氧速率, 可从

第一作者: 黄江丽, 女, 1958年生, 硕士研究生, 副教授, 主要从事水污染控制工程方面的研究。

^{*} 吉林省科委"有机废水高效处理设备的开发与应用 '资助项目 🗛 。吉科合字第 962801-2), 该项目获吉林省科技进步三等奖。

图 2 氧在清水及印染废水中的饱和溶解度

曝气设备的两个方面加以强化: (1)改变曝气器的结构,采用中微孔曝气器,在相同曝气量的条件下,提高曝气器的 *KL*_a,可以达到提高 $\frac{dc}{dt}$ 的目的; (2)提高 *C*_s,也可以达到提高 $\frac{dc}{dt}$ 的目的。实验采用的加压曝气法是提高曝气充氧能力的有效措施。

1.2 动力学参数 K 的求定^[3]

在水温为 12~25 ,保持活性污泥系统的污泥 质量浓度 x (5~7 g/L)及进水 COD_{cr} (800~1400 mg/L)大致不变,改变水力停留时间 t (7、& 9 h), 测定相应的进、出水 COD_{cr} ($S \alpha S e$),计算相应的 (S o-S e)/x t,以S e 为横坐标,以(S o-S e)/x t 为 纵坐标代入程序作图,得一直线(见图 3)。直线方程 为: y= 0 003 2x- 0 525 直线斜率即为K= 0.003 2 L/(mg · d)。

保持生化塔内的污泥质量浓度大致在 5~ 7

g/L, 进水 CODcr在 1 200~ 1 800 mg/L, 测定不同 水力停留时间条件下的出水 CODcr及每日从生化塔 内排出的剩余污泥(即不同的细胞停留时间)。根据 式(2)

$$\frac{1}{\Theta} = Y \times q - K_d = Y \times \frac{So - Se}{Xt} - K_d$$
(2)

以^{So-Se}为横坐标, 以 1/θ 为纵坐标(θ 为污泥龄) 作图得一直线, 直线在纵轴上的截距为 Ka, 直线的 斜率为 Y。 图解法求 Ka, Y (见图 4, 温度为 14~21)。

图解求得方程: y = 0 061 1x + 0 003 2 (3)

则 Y = 0 061 1(单位MLSS 与单位 COD cr的比值); K d = 0 003 2 d⁻¹。

1.4 表观产率系数 Y abs 的求定

通过式(2)及 $Y_{obs} = \frac{Y}{1 + K_a/\mu} \mu = 1/\theta$ 即可以求 出相应的 Y_{obs} 值,其值范围应该在 0 056~ 0 060(单 位MLSS 与 COD cr的比值)。

1.5 动力学常数 a、b 值的求定

1.5.1 b 值的求定

 $\Delta O_{2} = aQ (So-Se) + bVX$ (4) 式中: ΔO_{2} 为生化需氧量, kg/d; (So-Se) 为基质去 除量, kg/d; VX 为微生物量, kg; a 为合成的氧利用 系数, kgO₂/kg 基质; b 为维持细胞活动的氧利用系 数, d⁻¹; Q 为进水量, m³/d。当So=0时, (即进水 COD cr=0)时, $\Delta O_{2} = bVX$ 。测定活性污泥内源呼吸 的耗氧速率, 即可求定 b 值。具体测定过程如下: 取 培养驯化好的污泥, 沉淀 1 h 后, 弃去上清液, 加入 蒸馏水, 保持混合液DO 在 5~6 mg/L, 充分曝气 8 h, 测定不同污泥条件下的废水耗氧速率, 以污泥浓 度为横坐标, 以耗氧速率为纵坐标, 作图得一直线, 直线的斜率即为 b 值。印染废水 b 值的图解如图 5 所示。

图解得方程为 y = 0 098 6x - 9 236 3 斜率即 为 b = 0 098 6 d⁻¹。

1.5.2 a 值的求定

将求得的 b 值代入式(4) 得 ΔO 2= a Q (S o- S e)

+ 0 098 6VX 整理得:

$$R = \frac{O_2}{V} = a (S o- S e) / t + 0 098 6X$$
 (5)

式中: R 为混合液耗氧速率, $mg/(L \cdot h)$; $t = \frac{V}{Q}$ 。测 定不同进水浓度、停留时间条件下的混合液耗氧速 率R, 以 $\frac{So-Se}{t}$ 为横坐标以R 为纵坐标作图(见图 6)。 直线的斜率即a 为 0 561(单位O₂ 与 CODcr的 比值)。

图6 图解法求 a 值

2 加压生物氧化法处理印染废水的动力学模型

2.1 微生物比底物利用率公式^[4]

q = K(Se-Sn) (6) 式中: q 为微生物比底物利用率, d^{-1} ; K 为有机物降 解速率常数, $L/(mg \cdot d)$, 存在 $\frac{So-Se}{Xt} = K \times Se$ 关 系, 通过做图法求得, 同 K_d ; So, Se 为进, 出水 CODcr, mg/L; Sn 为不可生物降解部分 CODcr, mg/L; X 为活性污泥质量浓度, g/L; t 为水力停留 时间, d_a

从而可得微生物比底物利用率模型:

$$q = 0 \ 003 \ 2(S \ e - \ S \ n) \quad (d^{-1}) \tag{7}$$

2 2 微生物增长速率公式^[5]

在反应器内, 微生物量因增殖而增加, 同时又因 内源代谢而减少, 其中的变化可以通过L aw rence-M eCaty 模型表示:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = Y \left(\frac{\mathrm{d}s}{\mathrm{d}t}\right)_{u} - K_{d} \cdot X \tag{8}$$

式中: Y 为微生物产率系数, 单位生物量与降解的有 机基质的比值; K_a 为微生物内源代谢作用的自身氧 化率, d⁻¹; $\frac{dx}{dt}$ 为微生物净增殖速率, mg/(L · d); X为反应器内微生物质量浓度, mg/L; $(\frac{ds}{dt})_a$ 为基质 降解速率, mg/(L · d)。

微生物增长速率模型 $\frac{dx}{dt} = 0 0611 \times \frac{ds}{dt} = 0$ 0.0032X (9)

2 3 基质降解与需氧量之间的关系公式 采用 EcKenfelder 等提出的合成系数法公 · 432 · 式^[6], 即公式(4): $\Delta O_2 = a Q (So-Se) + bVX$ 将上 面求得的各系数代入, 即可得有基质降解与需氧量 间的关系模式:

 $\Delta O_{2} = 0 \ 561Q \ (S \ o^{-} \ S \ e) + 0 \ 0986V X \ (kg/d)$ (10)

2 4 基质降解与生物增长量之间的关系公式 采用 EcKenfelder 提出的合成系数法公式^[6]:

 $\Delta X = YQ (So-Se) - K_aVX$ (11) 式中: ΔX 为微生物增长量, kg/d; Y 为微生物产率 系数, 无因次; K_aVX 为反应器由于微生物内源呼吸 而失去的生物量, kg/d; Q 为废水流量, m³/d; $S \propto Se$ 为进出水基质质量浓度, mg/L。

基质降解与生物增长关系模型:

$$\Delta X = 0 \ 061 \ 1 \ Q \ (S \ o\ - \ S \ e) - 0 \ 0032 V \ X \qquad (kg/d)$$
(12)

3 结 论

以印染废水为研究对象,针对加压反应器的气体转移理论,耗氧速率、供氧能力的分析,揭示了在加压条件下,系统内有机物降解,污泥增长、耗氧等作用与各项设计参数、运行参数及环境因素之间的关系。

加压生物氧化法动力学模型反应了微生物比底 物利用率、增长速率、基质降解与需氧量及生物增长 之间的关系,较好地体现了印染废水加压生物处理 的有机物降解及生物增长规律,为工业化处理装置 的设计及运行提供了一定的依据,为实际应用奠定 了理论基础。

参考文献

- 1 黄江丽 利用加压生物氧化法处理印染废水的研究 环境工程, 2001, 20(5): 24~ 28
- 2 LiL, Chen P G, Loyna E F. Generalized kinetic model for wet oxidation of organic compounds A IChEJ, 1991, 37: 1687~ 1697
- 3 Orupold K. Estimation of treatability of different industrial wastewaters by activated sludge oxygen uptakemeasurements W at Sci Tech, 1999, 40(1); 31~ 36
- 4 Henze M. Activated Sludge Model No. I. London: IAW PRC, 1987
- 5 顾夏声 废水生物处理数学模型 北京:清华大学出版社,1993 120~160
- 6 张 建,黄 霞,丁文明,等 草浆造纸中段废水的生物处理动力
 学 环境科学,2002,23(5):84~87

责任编辑: 闵 怀 (修改稿收到日期: 2004-08-30)

nitrified liquor is 0 6, the removal rate is $83\% \sim 89\%$ for COD_{Cr}, $94\% \sim 96\%$ for BOD₅, $96\% \sim 98\%$ for SS and $58\% \sim 70\%$ for NH₃-N respectively. The process uses sludge as nutriment resource, it is turned mostly into bodies of earthworms and their excreta, which can be used as the high grade feed and fertilizer afterwards The process also has the characteristics of saving energy consumption, low cost and easily managing

Keywords M unicipal sew erage

Sludge M icrobial Earthworm Synchronous treatment

Research on the dynam ics model of printing and dyeing wastewater treatment by pressurized bio-oxidation process

$\begin{array}{ll} H \, uang \, J \, iang \, li^1 & Zhao \, W \, en \, sheng^1 \\ Shi \, H \, anchang^2 & Q \, ian \, Y \, i^2 \end{array}$

(1. Department of Environmental Science and Engineering, Jilin Institute of Chemical Engineering, Jilin Jilin 132022; 2 State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084)

The method of pressurized activated sludge process contrasted with others has the following advantages: its techniques are simple and advanced, and the ability to endure loading strike is strong; it occupies fewer land area and its investment is lower; the most important one is that it has less residual sludge. The research on bio⁻oxidation reactive mechanism of printing and dyeing wastewater treatment by pressurized activated sludge process was described. The value of dynamics parameters in the course of experiment was obtained and the dynamics model was determined. At the same time, the designing and running parameters in treating printing and dyeing wastewater with pressurized bio⁻oxidation process were provided

Keywords Pressurized bio-oxidation process Printing and dyeing wastewater Dynamics model

Effect of hydraulic retention time on the treatment efficiency and operational characteristics of biological aerated filter

Q iu L ip ing^{1,2} M a Jun³ Zhang L ix in²

(1. Postdoctoral Workstation Harbin Institute of Technology, Harbin Heilongjiang 150090; 2. School of Civil Engineering, Jinan University, Jinan Shangdong 250022; 3. School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin Heilongjiang 150090)

A bench-scale investigation was accomplished to evaluate the effect of hydraulic retention time (HRT) on the efficiency and operational characteristics of biological aerated filter (BAF) by using a synthetic domestic wastewater as feed water. The variations of operation pattern and treatment efficiency of the bioreactor resulted from the changing of hydraulic retention time were analyzed The experimental results demonstrated that it was effective to remove the organic matters and turbidity when the hydraulic retention time was longer than 0 6 h. However, the removal efficiency of organic matters and turbidity decreased remarkably when the hydraulic retention time was 0 4 h The nitrification and denitrification ability of BAF declined sharply with decreasing the hydraulic retention time The ammonia and total nitrogen removal efficiency were more than 70% and 40% respectively when hydraulic retention time was longer than 1. 25 h. In addition, it was also observed that nitrite accumulation could be carried out when the hydraulic retention time was shortened, and that a linear relationship between hydraulic retention time and operation time was also found in the study.

Keywords: B io logical aerated filter (BAF) Hydraulic retention time (HRT) T reatment efficiency N itrite accumulation Filter cycle time

Study on domestic wastewater treatment in a combined biof ilm reactor

Guo Haiyan Zhuo Jiti Jiang Su Zhang Zhiyong (Department of Environmental Science and Technology, Dalian University of Technology, Dalian Liaoning 116023)

A combined biofilm reactor was developed on the principle of traditional oxic/anoxic nitrogen removal process and used for the treatment of domestic wastewater Experimental result showed that COD and TN removal efficiencies of the reactor came up to 97% and 82% respectively under the optimal conditions in spite of the increased organic load Control was achieved by varying aeration rate and wastewater inlet position M icroorganism activity assay demonstrated that nitrification occurred mainly in the aerobic zone and denitrification in the anoxic zone Simultaneous nitrification and denitrification (SND) also happened throughout the reactor due to the existence of m icroenvironment in the biofilm.

Keywords: N itrogen removal Combined reactor B iofilm N itrification D enitrification SND