首页 > 新闻 > 正文

污泥处理:基于泥质,保障出路,逆向设计,分质处理

时间:2018-07-11 09:49

来源:环境论评

作者:李欢

评论(0

为了加速污泥处理处置工作的开展,近年来我国出台了一系列污泥处理处置标准和技术指南,但很多项目的设计、建设和运营过程中仍然存在诸多问题。一方面,许多项目只考虑采用单一技术实现污泥中单一组分的资源化,而缺乏系统的布局,特别是缺乏对污泥最终出路的详细规划,导致大量的消化污泥、干化污泥、焚烧灰渣等中间产物无处可去。另一方面,在常用的污泥处理处置技术路线中,污泥中的水分、有机质、无机质等三类组分往往互相制约,如污泥有机质含量及其组成严重影响污泥的水分脱出效率,而水分、无机质的存在也会影响有机质的燃烧转化。相反的,如果通过合适的流程设计实现污泥的分质处理,就可能提高污泥的处理效率。针对这些问题,一方面,在项目设计时就应该将污泥的最终处置环节纳入,并从污泥出路开始进行逆向设计;另一方面,需要全面客观认识我国污泥的特性,并对污泥处理处置技术进行重新定位和组合,实现污泥的分质处理。

1.污泥性质解析

1.1 污泥的贫资源特征

污泥常被认为拥有巨大的资源化潜力。然而,无论从产量还是品质上,污泥资源化潜力远不如生活垃圾、农林废弃物等大宗废物。据国家统计局数据,2016年,我国生活垃圾清运量达2.0亿吨,而市政污泥产生量约4000万吨(以80%含水率的脱水污泥计),扣除水分后,干固体仅800万吨。我国污泥有机质含量普遍偏低,一般为30~60%,这意味着前述干固体中还有大量缺乏资源化价值的无机质。虽然这些无机质可以用于制建材,但这种方式更适宜称为废弃物消纳而非资源化利用。有机质中,难以生物降解的木质纤维素含量约14~30%,腐殖酸含量约10~15%,它们的存在进一步降低了污泥生物转化能源的效率。以污泥有机质含量60%为例,脱水污泥成分可以用图1(a)概括。从污泥干固体元素组成看,其碳含量相远低于生物质废物。根据对几十座南方污水厂污泥性质的调查,其平均元素组成如图1(b)所示,其中碳元素作为多种资源化处理技术的利用对象,其比例仅45%。从污泥有机物组成看,蛋白质是主要成分,但其含量不超过50%,其次是多糖、腐殖酸、脂类等。

因此,污泥是一种高含水率、多组分构成的复杂废物,无论是以有机质、无机质为资源化对象,还是单纯以某一类组分或元素为资源化对象,其在污泥中的比例都很低。因此,污泥具有贫资源的特点,如果仅围绕某一类组分设计处理流程,其效率不高,而对某一类组分(如生物炭、蛋白质、磷)的过度追求可能会导致处理费用和环境负荷的大幅增加,因此应从废弃物消纳的角度综合考虑污泥的处理处置系统。

图1 脱水污泥的平均组成和元素含量

1.2 污泥的低热值特性

污泥能源化是污泥资源化的主要方向之一,其主要利用污泥中的有机质。然而,污泥中的大量水分不应忽略,应该纳入到整个处理流程中考虑。污泥干基热值与有机质含量的关系统计如图2所示。污泥有机质含量60%时,其干基热值约12000 kJ/kg,这意味着,1kg脱水污泥有机质热值约1440 kJ,低于水分蒸发所需的约2000 kJ热量。从这个角度看,污泥实际上是一种负热值或低热值废物,普通机械脱水+热干化+热化学处理(焚烧/混烧/热解/碳化等)均不能实现能量的净产出。上述技术路线实际上需要额外输入能量,并非严格意义上的“能源化”。

要降低污泥水分脱除的费用,可以采用太阳能、废热等廉价热能,但这需要合适的外部条件;而要减少水分蒸发能耗,可以通过强化机械脱水使污泥含水率从80%降至60%或更低,再进行热干化。尽管其电耗增加,但总的能耗要小于热干化。此外,还可以采用无需分离水分的有机质转化能源技术,如厌氧消化等。 

图2 污泥有机质含量与热值的关系

1.3 污泥的絮体结构特征

和一般的生物质废物不同,剩余污泥颗粒由微生物细胞、胞外聚合物(EPS)为骨架的絮体构成,EPS之间由钙、镁等二价金属离子联结,而水分、细沙等被裹挟在絮体内。这些水分除少量自由水外,大量水分以附着水、毛细水、结合水的形式存在于絮体内部,难以脱除。污泥的高含砂量特性也会影响污泥处理设备的长期稳定运行,虽然可以通过离心机或水力旋流除砂器去除污泥中的砂砾,但这些方法对粒径小于200 μm的细砂分离效果一般,而且需要较大能耗。剩余污泥的这一絮体机构特征会对其脱水、干化和生物处理造成不利影响。

要进行科学的污泥处理处置,就必须充分认识污泥的贫资源、低热值和絮体结构特性,防止片面夸大污泥的资源属性,过度追求单一的资源化产品,而应在保证污泥无害化的前提下采用综合的污泥处理处置系统。

2. 污泥处理处置技术流程的逆向设计

污泥处理处置的全过程包括处理和处置两个阶段,处置就是要实现污泥的最终消纳,处置之前为处理阶段。许多污泥项目往往只有处理阶段,即从污泥来源开始,依照污泥的处理流程布置处理单元,而由于认识水平、政策导向、管理机制和市场竞争等原因忽略或简化了最终处置环节,使得这些项目成为了“半截工程”。例如,厌氧消化项目仅转化污泥中的部分有机质,对消化污泥仅提出可以进行土地利用,但对土地利用的预处理、场地和具体规程等都未进行说明;热干化项目仅是去除污泥中的水分,但对干化污泥的出路缺乏规划或者避而不谈;焚烧项目并非最终处置手段,对于有机质含量50%的污泥而言,500 t/d(脱水污泥)项目的灰渣产量将超过50 t/d(含有补充燃料和烟气治理引入的无机质),一些项目仅提出焚烧灰渣可以进行建材化利用,但对灰渣性质、建材种类、加工方法、销售途径语焉不详。这导致很多项目投产后运营不佳,不仅未达到资源化预期,还导致了污染物的再次转移。

为了解决上述问题,应该采用逆向设计代替传统的正向设计,从污泥的最终出路出发对全流程进行布置。严格来说,污泥的处置方式只有填埋、土地利用和建材化等。污泥填埋可以消纳全部污泥,是现阶段许多城市不得不采用的处置方式。然而,从填埋场运行管理以及政策导向看,尽量减少进入填埋场的水分和有机质是污泥填埋的主要趋势。因此,在污泥填埋之前应脱除水分和去除有机质。污泥建材化主要利用其中的无机质,包括水泥窑协同处置、制砖和制陶粒等。水泥窑协同处置对污泥前处理过程要求较低,有机质可以在水泥窑中燃烧释放热量,湿污泥也可少量掺烧,但更好的方式是利用余热干燥污泥后再入窑,因此这一处置方式的前处理过程主要是脱除水分。污泥制砖、制陶粒时需要采用干污泥,有机质在烧结过程中可以提供热量和促进孔隙生成,但从提高陶粒或砖的质量以及增加污泥消纳量的角度,适宜采用污泥灰渣进行烧结或制免烧砖,因此其前处理过程包括脱除水分和去除有机质。污泥土地利用主要是利用其中的营养元素和稳定化的有机质(如腐殖质),无机质对其影响较小,因此土地利用之前要进行水分脱除和有机质转化。

编辑:赵凡

3
  • 微信
  • QQ
  • 腾讯微博
  • 新浪微博

版权声明: 本网注明"来源:E20环境平台"、"来源:中国水网"、"中国水网讯"等字样的文字、图片内容,版权均属中国水网所有,如若转载,请注明来源。同时本网转载内容不代表本网观点。

网友评论 3人参与 | 0条评论

相关新闻

010-88480317

news@e20.com.cn